datasheet

带你了解一下神秘的核电池技术

2019-04-15来源: EEWORLD 关键字:核电池

2019年1月3日,嫦娥四号月球探测器已成功软着陆。这是全人类首次成功登陆月球背面。嫦娥四号此次着陆在在崎岖的极区,这意味着嫦娥三号相比于以往的号更难以获得光照,观测环境,尤其是夜间环境会更冷,为了不让探测器因为失温而坏掉,嫦娥四号也必须更注意保温。


因此,嫦娥四号除了太阳能板之外,还带了一块“核电池”,可以在夜晚的时候也可以开展一些科研观测,而不必像三号那样一到晚上就得睡觉。



一说到核电,很多人会自然想到核电站,实际上核电池与核电站的唯一关系就是都运用了核技术,但是它们的原理是截然不同的。


核电站是利用核裂变产生的热量,将水变为水蒸气推动汽轮机发电。核电站的发电过程与普通火力电站的区别就是一个是用核能产生热,一个是烧煤产生热。而核电池,是使用同位素自然衰变产生的热量,通过温差热电效应,转化为电能。


核电池,又称同位素电池,它是利用放射性同位素衰变放出载能粒子(如α粒子、β粒子和γ射线)并将其能量转换为电能的装置。



按提供的电压的高低,核电池可分为高压型(几百至几千V)和低压型(几十mV—1V 左右)两类按能量转换机制,它可分为直接转换式和间接转换式。更具体地讲,包括直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等。其中直接充电式核电池、气体电离式核电池属于直接转换式,应用较少。目前应用最广泛的是温差式核电池和热机转换核电池。


核电池取得实质性进展始于20世纪50年代,由于其具有体积小、重量轻和寿命长的特点,而且其能量大小、速度不受外界环境的温度、化学反应、压力、电磁场等影响,因此,它可以在很大的温度范围和恶劣的环境中工作。目前已经在航天、极地、心脏起搏器等领域成功应用。


核电池的基本原理及种类


放射性同位素电池的热源是放射性同位素。它们在蜕变过程中会不断以具有热能的射线的形式,向外放出比一般物质大得多的能量。这种很大的能量有两个令人喜爱的特点。一是蜕变时放出的能量大小、速度,不受外界环境中的温度、化学反应、压力、电磁场的影响,因此,核电池以抗干扰性强和工作准确可靠而著称。另一个特点是蜕变时间很长,这决定了放射性同位素电池可长期使用。


放射性同位素电池采用的放射性同位素来主要有锶-90(Sr-90,半衰期为28年)、钚-238(Pu-238,半衰期 89.6年)、钋-210(Po-210半衰期为138.4天)等长半衰期的同位素。将它制成圆柱形电池。燃料放在电池中心,周围用热电元件包覆,放射性同位素发射高能量的α射线,在热电元件中将热量转化成电流。



放射性同位素电池的核心是换能器。目前常用的换能器叫静态热电换能器,它利用热电偶的原理在不同的金属中产生电位差,从而发电。


它的优点是可以做得很小,只是效率颇低,热利用率只有10%~20%,大部分热能被浪费掉。在外形上,放射性同位素电池虽有多种形状,但最外部分都由合金制成,起保护电池和散热的作用;次外层是辐射屏蔽层,防止辐射线泄漏出来;第三层就是换能器了,在这里热能被转换成电能;最后是电池的心脏部分,放射性同位素原子在这里不断地发生蜕变并放出热量。


按能量转换机制,核电池一般可分为直接转换式和间接转换式。更具体地讲,包括直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等。


按提供的电压的高低, 核电池可分为高压型(几百至几千V)和低压型(几十mV— 1 V 左右)两类。高电压型核电池以含有β射线源(锶-90或氚)的物质制成发射极,周围用涂有薄碳层的镍制成收集电极,中间是真空或固体介质。低电压型核电池又分为温差电堆型、气体电离型和荧光-光电型三种结构。


核电池的主要发展历程


第一个放射性同位素电池是在1959年1月16日由美国人制成的,它重1800克,在280天内可发出11.6度电。在此之后,核电池的发展颇快。


1961年美国发射的第一颗人造卫星“探险者1号”,上面的无线电发报机就是由核电池供电的。1976年,美国的“海盗1号”、“海盗2号”两艘宇宙飞船先后在火星上着陆,在短短5个月中得到的火星情况,比以往人类历史上所积累的全部情况还要多,它们的工作电源也是放射性同位素电池。


2012年,美国“好奇”号登录火星。“好奇”重量超过900公斤,是2004年登陆火星的“勇气”号和“机遇”号重量的约5倍。


“好奇”号的动力由一台多任务放射性同位素热电发生器提供,其本质上是一块核电池。该系统主要包括两个组成部分:一个装填钚-238二氧化物的热源和一组固体热电偶,可以将钚-238产生的热能转化为电力。这一系统设计使用寿命为14年,也高于太阳能电池板。该系统足以为“好奇”号同时运转的诸多仪器提供充足能量。


核电池材料


一般来说,核电池结构最里边是其心脏部分,为放射性同位素,它不断地发生衰变并放出热量;同位素的外层为换能材料,在这里热能被转换成电能;接着是辐射屏蔽层,防止辐射线泄漏出来;最外边一般由合金制成,起保护电池内部结构和散热的作用。可见核电池所用材料涉及同位素放射源、能量转换材料、防辐射材料、散热材料等。由于其特殊的用途决定了所选用材料的特殊性。



同位素放射源


同位素放射源在不同类型的核电池中所起的作用也不尽相同。直接充电式核电池是利用放射源发射的带电粒子来产生电势差;气体电离式核电池和辐射伏特效应能量转换核电池是利用其发射的粒子束对介质的电离作用来产生电势;荧光体光电式核电池是利用其发射射线诱发荧光物质发光后通过光电转换成电能;而热致光电式核电池、温差式核电池和热机转换电池则利用放射源产生的热能来实现能量转换。


作为核电池的能量来源,同位素放射源都必须满足以下条件:半衰期长(以保证电池的长寿命)、功率密度高、放射性危险性小、容易加工、经济和易于屏蔽等。


根据放射性同位素放出的射线不同,可以将其分为α源、β源、γ源3类,其中适合作为核电池放射源的有近10种。包括γ源60Co; β源90Sr,137Cs,144Ce 和147Pm; α源210Po,233Pu,241Am,242Cm和244Cm 等。



这些同位素单质或化合物通常用耐高温材料做成的外壳密封,一起构成核电池的能量核心。在空间应用中最为合适的放射性同位素的是α热源,如238Pu和210Po,它们的外照射剂量低,所需屏蔽重量小,可以大大节省火箭发射费用。238Pu的寿命长,半衰期为87.7a,衰变时释放的能量为5.48MeV。美国在空间飞行器上均使用238Pu热源。就238Pu热源的燃料形式而言,早期曾使用过金属钚(如SNAP-3B和SNAP-9A),之后使用了氧化钚微球(如SNAP-19B和SNAP-27)、氧化钚-钼陶瓷(如SNAP-19和百瓦级RTG),现今已发展为热压氧化钚(238PuO2)块(如通用型RTG)。


电能转换材料


核电池的发电机制各有不同,所用能量转换材料也不同。


直接充电式核电池的两个电极都选用金属,发射电子的一端为正极,接收电子的一端为负极。美国康奈尔大学科学家利用铜板和同位素63Ni板作为新型电池,在衰变时63Ni会释放β粒子,失去电子获得正电荷,铜板接收β粒子带负电;外接负载构成回路时,镍铜电池便会开始工作,源源不断地产生电流,为负载提供电能。63Ni半衰期达100a,按半衰期来算,该电池至少工作50a。


气体电离式核电池的能量转换靠溢出功有差异的材料实现,一般高溢出功的材料有铂、氧化铅、钼和金等;低溢出功的材料有镁和铝等;放射性气体电介质通常为氚或85Kr。若用二氧化铅(高逸出功)和镁(低逸出功)作为电极,开路电压可达1.5V 左右。


辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池和温差式核电池的发展都与半导体技术密切相关。随着半导体材料制造技术的提高,使得这些电池的实际应用成为可能。例如,美国能源部提出的先进放射性同位素发电体系(ARPS)的开发计划中就包括热致光电式核电池,使用的半导体为Ga-Sb元件,另外,Ge和Ga-As元件可较好地满足要求。采用这种材料制造的核电池的能量转换效率比目前使用温差式核电池高出2—3倍,这一计划的实施意味着未来空间能源在输出同样的功率时,可以使用较少的放射性同位素原料,并大大减少电池的重量和成本。


温差式核电池作为一种成熟的核电池,所用的能量转换材料为热电材料,是核电池的重要部件,其功能是将放射性同位素衰变时产生的热能转变为电能。温差热电转换部分是由一些性能优异的半导体材料组成,如碲化铋、碲化铅、锗硅合金和硒族化合物等,把这些材料串联起来,P型半导体元件和N 型半导体元件就作为电池的两极。它与周围介质之间的温差通

[1] [2] [3]

关键字:核电池

编辑:muyan 引用地址:http://www.eeworld.com.cn/dygl/2019/ic-news041529019.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:无线电池充电器设计太繁琐?试试感性这条路
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

永不断电的秘密:核电池的原理探究

  手机正以超摩尔定律的速度发展着,由单核发展到了现在的8核,屏幕发展到了1080p,内存也由几十MB到现在的2GB。手机中的一切都在更新换代,可唯独手机的电池还在原地踏步,而此前一直在说的燃料电池由于存着种种技术问题,所以也迟迟未能上市。而为了解决续航的问题,许多厂商只能增加手机的厚度,为的是能有更多的空间来摆放电池。而最近网上又在热传核电池,而且据说是20年不断电。      核电池名字听起来就够牛逼的了,它究竟是什么玩意,能否成为解决手机续航的终极武器呢?   可能有些人会怀疑,核电这么神秘的东西,怎么可能会做成电池般的大小呢?然而事实却真有这么个玩意,且淘宝上就有买。网上传言的这款电池名为NanoTritium
发表于 2013-01-25
永不断电的秘密:核电池的原理探究

好奇号核电池揭秘:可供能14年

  好奇号火星车是美国宇航局迄今最为先进的火星车,大小与一辆小汽车接近,以核电池作为动力。好奇号于2011年11月发射升空,预计于北京时间8月6日 13时31分在火星着陆,将首次采用特殊设计的“天空起重机”系统着陆。按计划,好奇号将在火星盖尔陨坑着陆,执行两年的考察任务,探索火星过去 或现在是否存在适宜生命的环境。      以下为美国宇航局官方公布的好奇号核电池工作原理:   好奇号火星车的动力是由一台多任务放射性同位素热电发生器(MMRTG)提供的,这台设备由美国能源部提供。这台发电机本质上是一块核电池,它可以将热能转化为电能。它主要包括两个组成部分:一个装填钚-238二氧化物的热源,以及一组固体热电偶,它们可以将钚
发表于 2012-08-05
好奇号核电池揭秘:可供能14年

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved