好文共享:理解低压差稳压器,实现系统优化设计

2015-10-27 13:37:42来源: EEWORLD 关键字:ADI
作者:Glenn Morita
 
低压差稳压器(LDO)看似简单,但可提供重要功能,例如将负载与不干净的电源隔离开来或者构建低噪声电源来为敏感电路供电。
 
本简短教程介绍了一些常用的LDO相关术语,以及一些基本概念,如压差、裕量电压、静态电流、接地电流、关断电流、效率、直流输入电压和负载调整率、输入电压和负载瞬态响应、电源抑制比(PSRR)、输出噪声和精度。同时,为了方便理解,文中采用了示例和插图。
 
设计过程中通常到后期才会进行LDO选型,并且很少进行分析。本文所述的概念将使设计人员能够根据系统要求挑选最佳的LDO。
 
压差 
 
压差(VDROPOUT)是指输入电压进一步下降而造成LDO不再能进行调节时的输入至输出电压差。在压差区域内,调整元件作用类似于电阻,阻值等于漏极至源极导通电阻(RDSON)。压差用RDSON和负载电流表示为: 
 
VDROPOUT = ILOAD × RDSON
 
RDSON包括调整元件电阻、片内互连电阻、引脚电阻和线焊电阻,并可通过LDO的压差进行估算。例如,采用WLCSP封装时,ADP151在200 mA负载下的最差情况压差为200 mW,因此RDSON约为1.0 Ω。图1所示为LDO的原理示意图。在压差模式下,可变电阻接近于零。LDO无法调节输出电压,因此输入电压和负载调整率、精度、PSRR和噪声等其他参数都没有意义。
 
图1. LDO的原理示意图
 
图2显示了3.0 V ADM7172 LDO的输出电压与输入电压之间的关系。2 A时的压差通常为172 mW,因此RDSON约为86 mΩ。压差区域从约3.172 V的输入电压下降到2.3 V。低于2.3 V时,该器件不能正常工作。负载电流越小,压差也会按比例下降: 在1 A时,压差为86 mV。低压差可最大程度地提高调节器的效率。
 
图2. 3.0 V ADM7172 LDO的压差区
 
裕量电压 
 
裕量电压是指LDO满足其规格所需的输入至输出电压差。数据手册通常将裕量电压作为指定其他参数时所用的条件。裕量电压通常约为400 mV至500 mV,但有些LDO需要高达1.5 V的裕量电压。裕量电压不应与压差混淆,因为只有当LDO在压差模式下工作时这两者才相同。
 
静态电流和接地电流 
 
静态电流(IQ)是指当外部负载电流为零时为LDO的内部电路供电所需的电流。它包括带隙基准电压源、误差放大器、输出分压器以及过流和过温检测等电路的工作电流。静态电流由拓扑结构、输入电压和温度确定。
 
IQ = IIN(空载时) 
 
当输入电压在2 V和5.5 V之间变化时,ADP160 LDO的静态电流几乎恒定不变,如图3所示。
 
图3. ADP160 LDO的静态电流与输入电压之间的关系
 
接地电流(IGND)是指输入电流与输出电流之差,并且必然包括静态电流。低接地电流可最大程度地提高LDO效率。
IGND = IIN – IOUT 
 
图4显示了ADP160 LDO的接地电流变化与负载电流之间的关系。
 
图4. ADP160 LDO接地电流与负载电流之间的关系
 
对于高性能CMOS LDO,接地电流通常远小于负载电流的1%。接地电流随负载电流的增加而增加,因为PMOS调整元件的栅极驱动必须增加,以补偿因其RON引起的压降。在压差区域内,在驱动器级开始饱和时,接地电流也会增加。对于要求具有低功耗或小偏置电流的应用而言,CMOS LDO至关重要。
 
关断电流 
 
关断电流是指输出禁用时LDO消耗的输入电流。参考电路和误差放大器在关断模式下都不上电。较高的漏电流会导致关断电流随温度升高而增加,如图5所示。
 
图5. ADP160 LDO关断电流与温度之间的关系
 
效率 
 
LDO的效率由接地电流和输入/输出电压确定: 
 
效率 = IOUT/(IOUT + IGND) × VOUT/VIN × 100% 
 
若需获得较高的效率,必须最大程度地降低裕量电压和接地电流。此外,还必须最大程度地缩小输入和输出之间的电压差。输入至输出电压差是确定效率的内在因素,与负载条件无关。例如,采用5 V电源供电时,3.3 V LDO的效率从不会超过66%,但当输入电压降至3.6 V时,其效率将增加到最高91.7%。LDO的功耗为(VIN – VOUT) × IOUT。
 
直流负载调整率 
 
负载调整率衡量LDO在负载条件变化时仍保持额定输出电压的能力。负载调整率定义如下(如图6所示): 
 
负载调整率 = ΔVOUT/ΔIOUT 
 
图6. ADM7172 LDO输出电压和负载电流之间的关系
 
直流输入电压调整率 输入电压调整率是衡量LDO在输入电压变化时仍保持规定输出电压的能力。输入电压调整率定义为: 
 
输入电压调整率 = ΔVOUT/ΔVIN。
 
图7显示了不同负载电流条件下ADM7172的输出电压与输入电压之间的关系图。输入电压调整率随着负载电流增加而变差,原因是LDO的总环路增益不断降低。此外,LDO的功耗也随输入至输出电压差增加而增加,这会导致结温升高而使带隙电压和内部失调电压降低。
 
图7. ADM7172 LDO输出电压和输入电压之间的关系
 
直流精度 
 
整体精度会考虑输入电压和负载调整率、基准电压漂移和误差放大器电压漂移的影响。稳压电源上的输出电压变化主要是基准电压源和误差放大器的温度变化造成的。如果使用分立电阻来设置输出电压,这些电阻的容差可能是影响整体精度的最主要因素。输入电压和负载调整率与误差放大器失调对整体精度的影响通常为1%至3%。
 
例如,可利用下列工作特性来计算3.3 V LDO在0°C至125°C温度范围内的总精度:电阻温度系数为±100 ppm/°C,采样电阻容差为±0.25%,因负载调整和输入电压调整而引起的输出电压变化分别为±10 mV和±5 mV,并且基准电压源的精度为1%。
 
温度导致的误差 = 125°C × ±100 ppm/°C = ±1.25% 
采样电阻导致的误差 = ±0.25% 
负载调整率导致的误差 = 100% × (±0.01 V/3.3 V) = ±0.303% 
输入电压调整率导致的误差 = 100% × (±0.005 V/3.3 V) = ±0.152% 
基准电压源导致的误差 = ±1% 
 
最差情况误差假定所有误差都沿同一方向变化
 
最差情况误差 = ±(1.25% + 0.25% + 0.303% + 0.152% + 1%) = ±2.955% 
 
典型误差假定随机变化,因此采用此误差的平方根(rss)
 
典型误差 = ± √(1.252 + 0.252 + 0.3032 + 0.1522 + 12) = ±1.655% 
 
LDO从不会超过最差情况误差,而rss误差是最有可能的误差。误差分布会以rss误差为中心并扩展到在尾部包括最差情况误差。
 
负载瞬态响应 
 
负载瞬态响应是指负载电流阶跃变化时的输出电压变化。它与输出电容值、电容的等效串联电阻(ESR)、LDO控制环路的增益带宽以及负载电流变化的大小和速率有关。
 
负载瞬态的变化速率会对负载瞬态响应产生显著影响。如果负载瞬态非常缓慢,比如100 mA/μs,LDO的控制环路或许能够跟踪该变化。但是,如果负载瞬态较快,环路无法进行补偿,则可能会出现异常行为,例如因低相位裕量而导致过大的振铃。
 
图8显示了ADM7172以3.75 A/μs的变化速率对1 mA至1.5 A负载瞬态的响应曲线。1.5 μs的0.1%恢复时间和最小振铃表明其具有良好的相位裕量。
 
图8. ADM7172负载瞬态响应。400 ns内产生1 mA至1.5 A的负载阶跃(红线)。输出电压(蓝线)
 
线路瞬态响应 
 
输入电压瞬态响应是指输入电压阶跃变化时的输出电压变化。它与LDO控制环路的增益带宽以及输入电压变化的大小和速率有关。
 
图9显示了ADM7150对2 V输入电压阶跃变化的响应。输出电压偏差也显示了环路带宽和PSRR的特性(参见下一部分)。对应于1.5 μs内的2 V变化,输出电压变化约为2 mV,表明约100 kHz时PSRR约为60 dB。
 
同样,跟在负载瞬态下一样,输入电压的变化速率也对输入瞬态响应有较大的影响。当输入电压缓慢变化(在LDO的带宽内只出现一个凹陷)时,可隐藏振铃或其他异常行为。
 
图9. ADM7150线路瞬态响应。1.5 μs内产生5 V至7 V的线路阶跃(红线)。输出电压(蓝线)
 
电源抑制 
 
简单地说,PSRR衡量电路抑制电源输入端出现的外来信号(噪声和纹波),使这些干扰信号不至于破坏电路输出的性能。PSRR定义为: 
 
PSRR = 20 × log(VEIN/VEOUT) 
其中,VEIN和VEOUTT分别是输入端和输出端出现的外来信号。
 
对于ADC、DAC和放大器等电路,PSRR适用于为内部电路供电的输入端。对于LDO,输入电源引脚为内部电路供电的同时也为输出电压供电。PSRR具有与直流输入电压调整率相同的关系,但包括整个频谱。
 
100 kHz至1 MHz范围内的电源抑制非常重要,因为LDO经常跟高效的开关电源配合使用来为敏感的模拟电路供电。
 
LDO的控制环路往往是确定电源抑制性能的主要因素。同时大容量、低ESR的电容也对电源抑制性能非常有用,特别是在频率超过控制环路增益带宽的情况下。
 
PSRR与频率的关系 
 
PSRR不是通过单一值来定义,因为它与频率相关。LDO由基准电压源、误差放大器,以及MOSFET或双极性晶体管等功率调整元件组成。误差放大器提供直流增益以便调节输出电压。误差放大器的交流增益特性在很大程度上决定了PSRR。典型LDO在10 Hz时可具有高达80 dB的PSRR,但在数十kHz时则可降至仅20 dB。
 
图10显示了误差放大器的增益带宽和PSRR之间的关系。这是一个简化的示例,图中忽略了输出电容和调整元件的寄生效应。PSRR为开环增益的倒数,直到3 kHz时增益开始下降为止。然后,PSRR以20 dB/十倍频程的速率降低,直到3 MHz时达到0 dB。
 
图10. LDO增益与PSRR的简化关系图
 
图11显示了用来表征LDO PSRR的三个主要频域: 基准电压PSRR区、开环增益区和输出电容区。基准电压PSRR区取决于参考放大器的PSRR和LDO的开环增益。理想情况下,参考放大器需与电源扰动完全隔离,但实际上,参考放大器只需抑制最高数十Hz的电源噪声,因为误差放大器反馈电路能确保在低频时具有高PSRR。
 
图11. 典型LDO PSRR与频率的关系
 
在大约10 Hz以上的第二区中,PSRR主要由LDO的开环增益决定。此区中的PSRR取决于误差放大器的增益带宽(最高为单位增益频率)。在低频时,误差放大器的交流增益等于直流增益。增益保持不变,直至达到3 dB截止频率。在高于3 dB截止频率下,误差放大器的交流增益随着频率增加而降低,速率通常为20 dB/十倍频程。
 
在误差放大器的单位增益频率以上,控制环路的反馈对PSRR没有影响,此时PSRR由输出电容和输入与输出电压之间的任何寄生效应确定。在这些频率下,PSRR主要受输出电容的ESR,ESL以及电路板布局布线的影响。为了降低任何高频谐振的影响,必须特别注意布局布线。
 
PSRR与负载电流的关系 
 
负载电流影响误差放大器反馈环路的增益带宽,因此也会影响PSRR。在低负载电流下(通常小于50 mA),调整元件的输出阻抗很高。由于控制环路的负反馈,LDO的输出近乎是理想的电流源。输出电容和调整元件形成的极点出现在相对较低的频率,因此,PSRR在低频条件下往往会提高。低电流时输出级的高直流增益往往也会提高误差放大器单位增益点以下各频率的PSRR。
 
在高负载电流下,LDO输出不能近似成一个理想电流源。调整元件的输出阻抗会下降,从而导致输出级的增益降低,DC至反馈环路单位增益频率之间的PSRR会有所下降。当负载电流增加时,PSRR会急剧下降,如图12所示。当负载电流从400 mA增加到800 mA时,ADM7150的PSRR在1 kHz时降低了20 dB。
 
输出级带宽随输出极点频率的升高而增加。在高频条件下,PSSR应会随带宽增加而提高,但实际上,由于总环路增益降低,高频PSRR可能不会提高。一般而言,轻载时的PSRR优于重载时。
 
图12. ADM7150电源抑制与频率的关系(VOUT = 5 V,VIN = 6.2 V)
 
PSRR与LDO裕量的关系 
 
PSRR也与输入到输出电压差(即裕量)有关。对于固定裕量电压,PSRR随着负载电流的增加而降低;这在高负载电流和小裕量电压时尤其明显。图13显示了5 V ADM7172在2 A负载下PSRR与裕量电压之间的关系差异。
 
随着负载电流增加,调整元件(ADM7172的PMOSFET)脱离饱和状态,进入线性工作区,其增益相应地降低。这导致LDO的总环路增益降低,因而PSRR下降。裕量电压越小,增益降幅越大。在某些小裕量电压下,控制环路根本没有增益,PSRR几乎会降至0。
 
导致环路增益降低的另一个因素是调整元件的非零电阻RDSON。负载电流在RDSON上引起的任何压降都会导致调整元件有效裕量降低。例如,如果调整元件是一个1 Ω的器件,当负载电流为200 mA时,裕量将降低200 mV。当LDO在1 V或更低的裕量电压下工作时,估算PSRR时必须考虑此压降。
 
在压差模式下,PSRR是由RDSON和输出电容形成的极点决定的。在非常高的频率下,PSRR会受输出电容ESR与RDSON的比值限制。
 
图13. ADM7172电源抑制与裕量的关系(VOUT = 5 V,2 A负载电流)
 
比较LDO PSRR规格 
 
比较LDO的PSRR规格时,应确保测量是在相同的测试条件下进行的。许多旧式LDO仅指定120 Hz或1 kHz时的PSRR,而未提及裕量电压或负载电流。至少,电气技术规格表中的PSRR应针对不同的频率列出。为使比较有意义,最好应使用不同负载和裕量电压下的PSRR典型工作性能曲线。
 
输出电容也会影响高频时的LDO PSRR。例如,1 μF电容的阻抗是10 μF电容的10倍。在频率高于误差放大器的单位增益交越频率时,电源噪声的衰减与输出电容有关,此时电容值就特别重要。比较PSRR数据时,输出电容的类型和值必须相同,否则比较无效。
 
输出噪声电压 
 
输出噪声电压是指在恒定输出电流和无纹波输入电压条件下,给定频率范围(通常为10 Hz或100 Hz至100 kHz)上的RMS输出噪声电压。LDO的主要输出噪声源是内部基准电压源和误差放大器。现代LDO采用数十nA的内部偏置电流工作,以便实现15 μA或更低的静态电流。这些低偏置电流要求使用高达GΩ级的偏置电阻。输出噪声的典型范围为5 μV rms至100 μV rms。图14显示了ADM7172输出噪声与负载电流之间的关系。
 
ADM7172等部分LDO可使用外部电阻分压器来设置初始设定点以上的输出电压,使初始设定为1.2 V 的器件可提供3.6 V输出电压。对于这样的应用,可向该分压器添加降噪网络,以便使输出噪声恢复到接近初始固定电压的水平。
 
图14. ADM7172输出噪声与负载电流之间的关系
 
LDO输出噪声的另一种表示方式是噪声频谱密度。在宽频率范围内绘制给定频率下1 Hz带宽上的rms噪声曲线图,然后使用该信息来计算给定频率带宽下的rms噪声。图15显示了ADM7172在1 Hz到10 MHz范围内的噪声频谱密度。

 
图15. ADM7172噪声频谱密度与负载电流之间的关系
 
结论 
 
LDO看似简单实则非常重要。若要正确运用这些LDO并获得最佳结果,必须综合考虑很多因素。对常用LDO术语有个基本了解后,设计工程师便可有效运用数据手册来确定对于设计而言最为重要的参数。
 
参考文献 
 
线性稳压器
 
Ken Marasco,“如何成功运用低压差稳压器”。模拟对话,第43卷第3期,2009年。
Glenn Morita和Luca Vassalli, “LDO运行窘境:低裕量和最小负载”。模拟对话,第48卷第3期,2014年。
Glenn Morita, “可调节输出低压差稳压器的降噪网络”。模拟对话,第48卷第1期,2014年。Glenn Morita, “低压差调节器——为什么选择旁路电容很重要”。模拟对话,第45卷第1期,2011年。
Jerome Patoux, “低压差稳压器”。模拟对话,第41卷第2期,2007年。
 
 
Glenn Morita于1976年获得华盛顿州立大学电气工程学士(BSEE)学位。毕业后加入Texas Instruments公司,期间参与研制旅行者号太空探测用红外分光仪。之后,Glenn一直从事仪器仪表、军用和航空航天以及医疗行业的装置设计工作。2007年,他加入ADI公司,成为华盛顿州贝尔维尤电源管理产品团队的一名应用工程师。他拥有25年以上的线性和开关模式电源设计经验,所设计电源的功率范围从微瓦到千瓦不等。Glenn拥有两项利用体热能量给植入式心脏除颤器供电方面的专利,以及另外一项延长外部心脏除颤器电池使用寿命的专利。闲暇时,他喜欢收集矿石、雕琢宝石、摄影和逛国家公园。
 
Glen Morita 
 
该作者的其他文章: 
应用工程师问答—41 LDO运行窘境:低裕量和最小负载
Volume 48, Number 3第48卷第3期

关键字:ADI

编辑:冀凯 引用地址:http://www.eeworld.com.cn/dygl/2015/1027/article_26321.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:艾迈斯半导体为单节锂电池供电产品推出200mA超紧凑型高效升
下一篇:凌力尔特推出双输出电流模式同步降压型 DC/DC 控制器

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
ADI

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved