透过IGBT热计算来优化电源设计

2015-01-30 22:42:27来源: 互联网
大多数半导体组件结温的计算过程很多人都知道。通常情况下,外壳或接脚温度已知。量测裸片的功率耗散,并乘以裸片至封装的热阻(用theta或θ表示),以计算外壳至结点的温升。这种方法适用于所有单裸片封装,包括双极结晶体管(BJT)、MOSFET、二极管晶闸管。但对多裸片绝缘双极晶体管(IGBT)而言,这种方法被证实不足以胜任。

 

某些IGBT是单裸片组件,要么结合单片二极管作,要么不结合二极管;然而,大多数IGBT结合了联合封装的二极管。大多数制造商提供单个θ值,用于计算结点至外壳热阻抗。这是一种简化的裸片温度计算方法,会导致涉及到的两个结点温度分析不正确。对于多裸片组件而言,θ值通常不同,两个裸片的功率耗散也不同,各自要求单独计算。此外,每个裸片互相提供热能,故必须顾及到这种交互影响。

 

本文将阐释怎样量测两个组件的功率耗散,使用IGBT及二极管的θ值计算平均结温及峰值结温。

 

 


图1:贴装在TO-247封装引线框上的IGBT及二极管。功率计算

 

电压与电流波形必须相乘然后作积分运算以量测功率。虽然电压和电流简单相乘就可以给出瞬时功率,但无法使用这种方法简单地推导出平均功率,故使用了积分来将它转换为能量。然后,使用不同损耗的能量之和以计算波形的平均功率。

 

在开始计算之前定义导通、导电及关闭损耗的边界很重要,因为如果波形的某些区域遗漏了或者是某些区域被重复了,它们可能会给量测结果带来误差。本文的分析中将使用10%这个点;然而,由于这是一种常见方法,也可以使用其他点,如5%或20%,只要它们适用于损耗的全部成分。

 

正常情况下截取的是正在形成的正弦波的峰值波形。这就是峰值功率耗散。平均功率是峰值的50%(平均电压是峰值电压除以√2,平均电流是峰值电流除以√2)。

 

一般而言,在电压波形的峰值,IGBT将导电,而二极管不导电。为了量测二极管损耗,要求像电机这样的无功负载,且需要捕获电流处于无功状态(如被馈送回电源)时的波形。

 

 


图2:IGBT导通波形。

 

 

导通时,应当量测起于IC电平10%终于10% VCE点的损耗。这些电平等级相当标准,虽然这样说也有些主观性。如果需要的话,也可以使用其他点。无论选择何种电平来量测不同间隔,重要的是保持一致,使从不同 组件获取的数据能够根据相同的条件来比较。功率根据示波器波形来计算。由于它并非恒定不变,且要求平均功率,就必须计算电源波形的积分,如波形迹线的底部 所示,本案例中为674.3 μW(或焦耳)。

 

 


图3:IGBT关闭波形。 

 

 

与之类似,关闭损耗的量测如下图所示。

 

 


图4:IGBT导电损耗波形。 

 

 

导电损耗的量测方式类似。它们应当起于导通损耗终点,终于关闭损耗起点。这可能难于精确量测,因为导电损耗的时间刻度远大于开关损耗。

 

 


图5:二极管关闭波形。

 

 

必须获取在开关周期的部分时段(此时电流为无功模式使二极管导电)时的二极管导通损耗资料。通常量测峰值、负及反向导电电流10%点的资料。

 

 


图6:二极管导电损耗波形。

 

 

二极管导电损耗是计算IGBT封装总损耗所要求的最后一个损耗成分。当计算出所有损耗之后,它们需要应用于以工作模式时长为基础的总体波形。当增加并顾及到这些能量之后,它们可以一起相加,并乘以开关频率,以获得二极管及IGBT功率损耗。裸片温度计算

 

为了精确计算封装中 两个裸片的温度,重要的是计算两个裸片之间的自身发热导致的热相互影响。这要求3个常数:IGBT的θ值、IGBT的θ值,以及裸片交互影响ψ(Psi)。某些制造商会公布封装的单个θ值,其中裸片温度仅为估计值,实际上精度可能差异极大。

 

安森美半导体IGBT组件的数据表中包含IGBT及二极管θ值图表。稳态θ值如图7及图8中的图表所示。IGBT的θ值为0.470 °C/W,二极管为1.06 °C/W。计算中还要求另一项热系数,即两个裸片之间的热交互影响常数ψ。测试显示对于TO-247、TO-220及类似封装而言,此常数约为0.15 °C/W,下面的示例中将使用此常数。

 

 


图7:IGBT瞬时热阻抗。 

 


图8:二极管瞬态热阻抗。

 

 

IGBT裸片温度

 

IGBT的裸片温度可以根据下述等式来计算:

 

 

 

 

假定下列条件:

  TC= 82°C

  RΘJC-IGBT= 0.470 °C/W

  PD-IGBT= 65 W

  PD-DIODE= 35 W

  Psi交互影响= 0.15°C/W

 

IGBT的裸片温度就是:

 

 

 

二极管裸片温度

 

JC-diode= 1.06°C/W

 

 

 

类似的是,二极管裸片温度为:

 

 

 

峰值裸片温度

 

上述分析中计算的温度针对的是平均裸片温度。此温度在开关周期内不断变化,而峰值裸片温度可以使用图7和图8中的热瞬时曲线来计算。为了计算,有必要从曲线 中读取瞬时信息。如果交流电频率为60 Hz,半个周期就是时长就是8.3 ms。因此,使用8.3 ms时长内的50%占空比曲线,就可以计算Psi值:

 

  IGBT 0.36 °C/W

 

  二极管 0.70 °C/W

 

 

 

IGBT裸片的峰值温度就会是:

 

 

 

二极管裸片峰值温度就是:

 

 

 

结论

 

评估多裸片封装内的半导体裸片温度,在单裸片组件适用技术基础上,要求更多的分析技术。有必要获得两个裸片提供的直流及瞬时热信息,以计算裸片温度。还有必要量测两个组件的功率耗散,分析完整半正弦波范围抽的损耗。此分析将增强用户信心,即系统中的半导体组件将以安全可靠的温度工作,提供最优的系统性能。

关键字:IGBT热计算  优化电源设计

编辑:探路者 引用地址:http://www.eeworld.com.cn/dygl/2015/0130/article_25479.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
IGBT热计算
优化电源设计

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved