用于 48V 电源的完整单 IC 电源管理电池维护 / 后备系统

2015-01-20 19:57:55来源: 互联网
提高便携性是电子设备一个共同的发展趋势;就是因为有人“拔掉了 电源插头”设备就被关断了,这种说法不再会被普遍接受。为了实现便携式功能,设备必须内置高级电源管理系统,其可控制从可用能量源至合适系统的电源通路、 保持后备元件处于满充电和就绪状态、并确保系统始终拥有足够的功率。

对于许多便携式设备 (例如:工作在低电压和低功率级别的智能手机或平板电脑),我们拥有现成的精致、单 IC 电源管理解决方案。面向高功率和高电压系统 (比如:许多工业或医疗设备所需的此类系统) 的电源管理解决方案通常需要使用笨重和复杂的专用分立式组件解决方案。LTC4020 把先进的电源管理功能整合到一款高电压和高功率单 IC 解决方案中,从而简化了这些环境中的电源管理。

LTC4020 具有一个四开关降压 / 升压型 DC/DC 电源转换器、针对优化电池充电的支持、以及凌力尔特专有的电源通路 (PowerPathTM) 系统 / 电池电源管理功能。LTC4020 能针对负载变化、电池充电要求和输入电源限制条件来管理系统输入电源、后备电池和转换器输出之间的功率分配。

单电感器 DC/DC 降压 / 升压控制器可接受高达 55V 的输入电压,并产生低于、高于或等于输入电压的输出电压。内置的电池充电器可通过配置以提供专为基于锂的电池而优化的恒定电流 / 恒定电压 (CC/CV) 充电模式、3 级铅酸电池充电模式或者改进型定时器充电终止恒定电流算法 (CC),该算法类似于锂电池充电模式,但其不包含低电压预查验和充电周期重启功能。

采用 CC 模式充电以放宽针对 48V 铅酸电池充电器的规则要求

当 LTC4020 被配置在专为铅酸电池而优化的充电模式中时,吸收充电期间的调节电压为典型电池系统电压的 120% (即:对于一个“12V”铅酸电池为 14.4V)。不幸的是,内置的铅酸电池充电算法不能用于 48V 系统电池,因为吸收充电电压将超过 LTC4020 的最大工作电压。这可以通过实现一个采用恒定电流 (CC) 充电算法的高电流浮动充电器来轻松地解决。

CC 充电算法通过将 LTC4020 的 MODE 引脚置于不连接状态来启用。一个反馈电阻分压器负责设置对应于 VFB = 2.5V 的期望电池浮动充电电压。CC 充电算法启用最大编程充电电流,直至达到浮动调节电压。当保持浮动调节电压时,铅酸电池浮动充电器必须能够持续地向电池供应电流,因此充电功能不会终止。 CC 充电模式能够通过设定 TIMER = 0V 来适应这一要求,采用这种设置将停用定时器功能,进而停用充电终止功能,于是充电循环将无限期地继续下去。

具有后备铅酸电池的 48V 系统电源

图 1 示出了将 LTC4020 配置为具有一个集成型后备电池浮动充电器的 48V 系统电源之情形。该电源的核心组件是一个平均电流模式降压 / 升压型 DC/DC 控制器,其采用了 4 个外部 NFET 作为开关元件,能提供 265W 的可用系统输出功率。

 

图 1:具有 265W 转换器输出能力、5A 电池充电电流和 53.75V 系统 / 浮动充电电压输出的 36V~55V 至 24 节铅酸电池 (48V) 浮动充电器 / 系统电源

该转换器依靠一个 36V 至 55V 的输入电源供电运作,其平均电感器电流被限制在 8.3A。转换器电流限值利用两个与 SiS862DN 开关 FET M1 和 M2 相串联的 6mΩ 检测电阻器 (RSENSE1 和 RSENSE2) 来设置。在整个工作电压范围内,DC/DC 转换器可在其输出端上提供至少 5A 的电流。

RSHDN1 和 RSHDN2 在 SHDN 引脚上形成了一个分压器,其负责将输入停机电压设定为 VIN = 35V,从而在输入低于 35V 时停用 DC/DC 转换器和电池充电器功能,这就可在电源使能时提供满负载电流。这里使用的 SiS862DN 开关 FET 具有各 10nC 左右的典型 QG,因此,当利用电阻器 RT 将工作频率设定为 250kHz 时,VIN = 55V 条件下的 QG(TOTAL) • fO 处在 LTC4020 的规定 INTVCC 传输元件 SOA 指标范围内。

如前文所述,该 IC 采用一种恒定电流 / 恒定电压充电模式来对一个含 24 节 (48V) 铅酸电池的后备电池组进行充电和保持。最大电池充电电流由 RCS 设置为 5A,到实现了 53.75V 的满充电浮动电压时可提供该电流。电池电压利用一个电阻分压器 (RFB1 和 RFB2) 来监视,其负责设置 53.75V (即每节电池 2.24V) 的满充电浮动电压。该分压器通过 FBG 引脚来参考,当 LTC4020 处于运作状态时,FBG 引脚短路至地,而当该 IC 停用时,FBG 引脚则变至高阻抗,从而减小了电池上的寄生负载。

LTC4020 优先向系统负载和电池充电功能电路供电,而系统负载的优先级始终高于充电电源,因此在承担重负载期间如有必要将减小电池充电电流。倘若系统负载超过了 LTC4020 DC/DC 转换器的供电能力,那么电池电流将改变方向,而且负载电流将由电池提供以补充转换器输出。

当 VIN 电源断接时,所有的 LTC4020 功能将终止,电池负责向输出提供所需的功率。从电池经由转换器的反向传导被开关 FET M4 所阻断,电池电压监察电阻分压器通过引脚 FBG 实现断接,流入 IC 的总电池电流减小至 10µA 以下,从而可在需要一种无负载储存条件时最大限度地延长电池寿命。

 

图 2:针对图 1 所示电路的最大电池充电电流

 

图 3:可用转换器输出电流 (系统负载电流 + 电池充电电流) 与输入电压的关系

结论

LTC4020 是一款单 IC 电源管理解决方案,适用于任何需要电池后备或电池供电型远程操作的高功率设备。集成型降压 / 升压 DC/DC 控制器能够为一个高于、低于或等于输入电压的电压轨供电。该 IC 运用了一种智能电源通路 (PowerPath) 拓扑,其将控制器输出合并到一个全功能多化学组成电池充电器中。该充电器包括一个用于充电循环控制和实时充电循环监察的内部定时器,其采用二进制编码状态 引脚。三种引脚可选的充电模式利用优化的充电特性提供了适合大多数常见电池类型的通用性。

关键字:电源  电池  系统

编辑:探路者 引用地址:http://www.eeworld.com.cn/dygl/2015/0120/article_25355.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电源
电池
系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved