datasheet

最好校正一下“功率因数”!

2014-03-16来源: deyisupport 关键字:功率因数

智能电表的部署正在全球范围内如火如荼地开展。通常,像你我这样的消费者只支付为空调以及支持互联网功能的大屏幕高清电视等所有家用电器供电所用的电量(kWh:千瓦时)。但事实上,对于所有不支持功率因数校正 (PFC) 的设备来说,从插座消耗的电能要高得多,得用千伏安时 (kVAh) 来表示。而这之间的成本差异则由公用事业公司慷慨承担了。

智能电表即可测量我们消耗的 kWh,也可测量公用事业公司最初产生及输送的 kVAh。值得注意的是这些智能设备能够显示我们不好的消费习惯。我们最好尽快校正功率因数,以免电力公司醒悟过来决定向我们索取他们应得的那份利益。

免受公用事业公司“复仇”之苦的一个办法是使用TI 全新功率因数校正控制器 UCC28180。该产品在连续导通模式下工作,支持从几百瓦到数千瓦的宽泛功率级,进而可用于广泛的家庭及办公电器设备,例如电视、空调、大面积照明、投影仪、工作站,以及工业/IT 基础设施环境(包括用于过程自动化的电源、可编程逻辑控制器、网络/电信领域的数据中心服务器以及蜂窝基站等)。

采用 UCC28180 实现功率因数校正主要分为“有源”PFC 控制和“无源”PFC 控制。

有源”PFC 控制使用一个开关模式电源转换器。“无源”PFC 控制只需将无源电气组件(我们优良的旧电感器与电容器)插入电气设备前端。

尽管组件数量可能会增加,但通过从无源 PFC 控制转为有源 PFC 控制,可显著节省总体设备成本,缩小尺寸,并减轻重量。一个典型实例就是用于数千瓦商用空调机 (A/C)。在这种情况下,无源 PFC 电感器的尺寸和重量都非常大,制造商不得不将其固定在底座上,并将连接它的配线添加至驱动主压缩机和电机的其余电子设备部分。采用具有高频率开关的有源 PFC 方案,电感器的尺寸和重量便可缩小数倍,从而可降低电磁元件的成本。此外,从机械设计角度来看,还可将电感器直接安装在主电子设备电路板上,以降低专用装配成本

UCC28180 可在低至 18kHz 的低开关频率下正常工作,有助于使用高效率大电流 IGBT 电源开关在数千瓦范围内实现比功率 MOSFET 更优异的性能。

与此同时,随着 SiC MOSFET 和 GaN HEMT 等全新电源器件的推出,UCC28180 可支持高达 250kHz 的开关频率,能够帮助您兑现宽带隙电源半导体的一贯承诺,为电源实现 50+W/in3 和 98+% 的最佳峰值效率。

总谐波失真 (THD) 如今已成为功率因数校正控制器应用中的必要性能参数。简言之,该参数代表着由剩余谐波之和表示的部分基本 AC 输入线路电流谐波 (47-63Hz)。测量基本谐波百分比,目的是将该参数保持在低至 5~10% 之间,尤其是在设备消耗大量电源的情况下,其可理解为达到铭牌额定功率值的 50% 至 100%。

LED 照明领域 THD 的相关博客文章:如何将总谐波失真降至 10% 以下

在由不间断电源 (UPS) 供电的设备中,如果要在这种负载条件下维持更长的时间,可能需要将 THD 降低至铭牌功率额定值的 10-20%。这是由于 UPS 需要完成一项艰巨的任务,即在高 THD 负载下提供具有良好稳压的 AC 输出。这种情况的典型实例是采用 UPS 的数据中心服务器电源,在夜间业务停止及办公室关闭时,该服务器将会在这些轻负载条件下空闲数小时。

当前业界已推出各种模拟 PFC 控制器,在将强电流感应信号提供给设备时,就可获得低 THD。然而,强电流感应信号(尤其在轻负载条件下)意味着使用大分流电阻器测量输入 AC 电流,这样做的缺陷是会消耗更多的电源 (IRMS2R)。通过使用支持内部微调高精度电流环路的 UCC28180,您可实现低至 5% 的 THD,实现比目前业界器件所用分流电阻小 50% 的分流电阻,从而可实现真正的高性能功率因数校正转换器。因此,最好使用 UCC28180 来校正功率因数!

关键字:功率因数

编辑:探路者 引用地址:http://www.eeworld.com.cn/dygl/2014/0316/article_20972.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于 LM5017 的反相升降压电路支持负电源
下一篇:PowerLab 笔记: 如何使用 Fly-buck™ 为低电压、低功耗工业应用供电

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

功率因数校正: PQvar™助力提高能效并确保负载平衡

TDK集团推出新型爱普科斯 (EPCOS) PQvar™ 模块化静态无功发生器,该设备广泛用于工业电网和大型商业建筑的主动式无级功率因数校正和负载平衡应用。PQvar全响应时间<15 ms,快速响应时间<50 µs,补偿速度比传统无功补偿更快。该设备可主动补偿感性和容性负载,且功率因数可达到0.99及以上。对于低压等级应用。PQvar可应用于400 V和690 V系统。在该电压等级下,单个模块输出容量可达30 kvar至200 kvar,且单个补偿柜最多能提供高达880 kvar的无功补偿容量。PQvar功率因数校正系统可显著提升能效。一方面,电力输配电网的功率损耗显著降低,且减少了浪费电能导致的二氧化碳排放;另一方面,变压器
发表于 2018-04-20

解析定义与测量方法,设计功率因数测量电路

1.功率因数的定义 为了表征交流电源的利用率,在电工学中引入功率因数PF(PowerFactor)这个术语,定义为有用功率P和视在功率S之比值,即 PF = P/S (1) 随着各行各业控制技术的发和要求可操作性能的提高,许多场合的用电设备都不直接使用通用交流网提供的交流电作为电能来源,而是通过各种形式对其进行变换,从而得到各种所需的电能形式。它们的幅度、频率、稳定度及变化方式因用电设备的不同而不同,如电动机变频调速器、绿色照明电源、开关电源等等,它们接入电压网后,也有一个交流电源的利用率问题。上述产品有一个共同特点就是:利用桥式整流器和大容量的滤波电容实现AC/DC转换,由工频市电获得直流电
发表于 2018-04-03
解析定义与测量方法,设计功率因数测量电路

功率因数补偿是什么?容性负载有何危害?

功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特性接近于阻性,从而改善效率低下的方法叫功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。而在上世纪80年代起,用电器具大量的采用
发表于 2018-03-31

用单片机测量三相电网功率因数角的测量原理

  本文介绍使用8031单片机测量三相电网功率因数角的原理、接口电路和程序实现。经实践验证,测量准确、稳定。      本方案所用的检测输入信号为线电压与线电流,即UCA与IB,或UBC与IA,或UAB与IC。这是因为它们之间的夹角θ和待测相角φ之间具有线性对应关系。现以UCA与IB为例,表明其夹角θ与相角φ间对应关系的矢量图如下图所示。●容性:0= 90°-0°,r=T/4~T/2,纯容性时,θ=0°,T= T/2。从上述分析得知,只要测量时间r,便可间接测量相角c。
发表于 2018-03-15
用单片机测量三相电网功率因数角的测量原理

用单片机测量三相电网功率因数角的接口电路

,8031的P3.0用来检测UCA电压过零点。当UCA从正到负过零点时,对应图1中uc(即P3.0)由0变为1,两个计数器T0、Tl同时开始计数;当UCA到了由负到正过零点时,uc则由1变0,计数器T0与Tl同时停止计数。设T0计数器计数值为N,T1计数器计数值为n,所测相角φ可按下式算出:    由8031很容易完成上述计算。若再进一步完成查表程序,则按φ角查正弦或余弦表,即可得功率因数cosφ。  程序框图    程序流程见下图。此处设计成子程序形式,执行完成后,φ角的二进制整数在31H中,小数部分在30H中,符号在33H中:OOH表示阻性或感性;80H表示容性。φ角的十进制结果则在32H中。cosφ在34H、35H中
发表于 2018-03-15
用单片机测量三相电网功率因数角的接口电路

基于SEPIC变换器的高功率因数LED照明电源设计

1、驱动电源拓扑结构和控制方式  LED需要的驱动电源,由交流电整流后再直直变换得到,整流电路通常采用二极管桥式整流并用电解电容进行滤波,这种方式功率因数比较低,对电网带来较大的谐波污染,通过有源功率因数校正电路减小谐波对电网的污染,因此电源的拓扑结构要能够较好的实现PFC,同时损耗也是需要考虑的重要因素,最后LED的电源通常都需要封闭起来,变换器的尺寸也受到限制。因此选择的变换器应具有以下优点:器件少,高效率,尺寸小。常用的有源功率因数校正的拓扑结构有BOOST,反激变换器,SEPIC等。BOOST变换器简单,效率比较高,但是其只能实现升压,适合于输出电压高于输入电压的场合,LED驱动电源需要升/降压,因此不能选用BOOST
发表于 2018-03-11
基于SEPIC变换器的高功率因数LED照明电源设计

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">