LON总线的USB2.0接口卡的研制

2007-03-09 19:03:27来源: 互联网
LonWorks总线是由美国Echelon公司推出的一种现场总线技术,由于LonWorks控制网络的开放性、高速性、互操作性及其对现场环境的适应性,它已广泛应用于楼宇自动化、家庭自动化、保安系统、办公设备、交通运输、工业过程控制等行业。LON总线的现场节点间采用LonTalk协议。当工程师使用便携设备对现场节点进行检测或进行现场数据采集时,往往只能使用RS232串口。众所周知,RS232的传输速度最高只能达到9600kbps,这对实时性要求很高的现场数据采集来说远远不能满足要求。针对这一情况,笔者开发研制了LON总线的USB2.0接口卡。该卡提供的USB2.0接口使得数据的传输速度能提高到480Mbps.并且向下完全兼容流行的USBl.1协议。 1 USB2.0的主要特点 USB协议的2.0版本于2000年4月推出,支持以下3种速度模式:低速模式(low speed)1.5Mb/s;全速模式(full speedl 12Mb/s;高速模式(high speed)480Mb/s。它支持现存的所有USB设备.可以把USB1.1设备插入USB1.1的PC机接口,并且在电气上兼容USB1.1的连接线。 1.1 USB总线特点 ◆数据传输速率高; ◆数据传输可靠; ◆同时挂接多个USB设备; ◆USB接口能为设备供电; ◆支持热插拔。 1.2 USB的新特性 USB还具有一些新的特性。如:实时性(可以实现和一个设备之间有效的实时通信)、动态性(可以实现接口间的动态切换)、联合性(不同的而又有相近特性的接口可以联台起来)和多能性(各个不同的接口可以使用不同的供电模式)。 2 LonWorks接口卡硬件设计 2.1 LonWorks接口卡通信原理及硬件结构 该接口卡的工作原理如下:接口卡由LON网接口模块和USB2.0接口模块组成,如图1所示,它采用双CPU技术,主CPU为USB2.0控制器CY7C68013内置的增强8051内核(该内核的运行速度是普通8051的5倍),主要作为协议的转换模块,用来完成USB2.0协议与LonTalk协议之间的转换,向上与便携PC机(或其它具有USB接口的便携设备)进行通信,向下与3150进行并口通信,辅CPU为TMPN3l50,主要起LON网接口的功能,作为通信协处理器使用,将从主CPU接收到的来自便携PC机(或其它具有USB接口的便携设备)的报文解析成Lontalk协议报文并通过Lonworks收发器传向LON网,或将从LON网上接收到的Lontalk协议报文转发给主CPU,再由主CPU传向便携PC机(或其它具有USB接口的便携设备)。51CPU与Neuron 3150采用并行方式通信。Neuron芯片的11个I/O有34种可选工作模式,其中包括并行I/O方式,该方式数据的最大传送速率可达3.3Mbps。并口工作方式在数据传送速度方面的优势,使得Neuron芯片与51CPU完成大数据量的传送成为可能。它们之间的数据传输是通过运用“虚写令牌传递机制”实现的,拥有令牌的一方拥有对数据总线的写控制权。 2. 2 LonWOrks接口卡硬件电路设计 该接口卡中,USB2.O控制器采用Cypress公司推出的USB2.0控制器CY7C68013,它是USB2.0的完整解决方案。该芯片包括带8.5KB片上RAM的高速8051单片机、4KB FIFO存储器以及通用可编程接口(GPIF)、串行接口引擎(SIE)和USB2.O收发器。它无需外加芯片即可完成高速USB传输,性价比较高。智能串行接口引擎(SIE)执行所有基本的USB功能,将嵌入式MCU解放出来用于实现专用的功能,井保证其持续高性能的传输速率。通用可编程接口(GPIF)允许它“无胶粘接”,即可与任何ASIC或DSP进行连接,并且还支持所有通用总线标准,包括ATA、UTOPIA、EPP和PCMCIA。它完全适用于USB2.0,并向下兼容USB1.1。 3150芯片选用Toshiba公司生产的TMPN3150。3150片内存储器的地址范围是E800H~FFFH,包括2KB的SRAM和512B的EEPROM。3150可以外接存储器,如RAM、ROM、EEPROM或Flash,其地址范围是0000H~7FFH。根据一般应用的性能和成本要求,3l50的外部存储器采用Flash和RAM。Flash选用IS61C256AH-15N,RAM选用AT29C512。61C256和29C512的地址范围通过逻辑门电路根据Neuron芯片的地址线和控制线E来确定。51与3l50采用3150的并口通信方式,将Neuron芯片的IO0~IO7作为8根数据线与51CPu的PB(PB0-PB7)口相连-108作为片选信号线e%26;#167;)与51CPU的PCO口相连.IO9作为数据读/写信号线(R/W)与51CPU的PC6口(写信号)相连。IO10作为握手信号线(HS)与51CPU的PC1口相连。 为提高增加接口卡的可靠性及稳定性,本设计增加了一个锁存器,完成复位接口的功能。当3150芯片复位时,通过锁存器将复位信号传送给CY7C68013内置的8051处理器,8051接到复位信号自动复位,并马上清锁存器,其接线如图2所示。在并口通信中,8051与3150同步非常重要,要完成并口通信,8051首先要与3150达到同步且同步操作必须在3150复位时进行。8051只在初始化程序时才与3150进行同步操作。因此完成同步后,每当3l50由于误操作或错误运行而造成复位时,3150与8051将会失去同步,而8051无法检测到,从而造成并口通信失败。加入锁存器之后,8051就能检测到3150的复位信号并自动复位自己的程序,使得8051与3150再次达到同步。这将使适配器的可靠性和稳定性都得到加强。 Neuron芯片与LON网络介质的接口采用一种LonWorks自由拓扑型收发器FTT-IOA。FTT-IOA是一种变压器耦台收发器,可提供一个与双绞线的无极性接口,且支持网络的自由拓扑结构。网络通信介质采用最常用的双绞线。 2.3接口卡的抗干扰设计 工业现场的环境一般来说较为恶劣.存在多种干扰。为保证通信的准确无误,延长硬件使用寿命,该适配器除采用通常的供电和接地抗干扰措施外,主要是要避免和消除来自网络介质的静电泄放(ESD)和电磁干扰(EMI),即主要针对FTT-IOA来设计抗干扰电路。 对于ESD,在印刷电路板(PCB)设计中应提供一个导入大地的通道.还要不致引起整个PCB电压的升降。具体采用火花放电隙和箝位二极管来实现。对于EMI,因为FTT-IOA对垂直杂散电磁场最不敏感,而对水平杂散电磁场最敏感。所以在PCB设计中应使FTT-IOA尽量远离水平杂散电磁场区域。对于不可避免的杂散电磁场,应使其相对于FTT-IOA垂直分布。 3 LOnWorks接口卡软件设计 3.1 Neuron芯片的编程语言——Neouron C Neuron芯片有一套专门的开发语言——Neuron C。Neuron C派生于ANSI C,并增加了对I/O、事件处理、报文传送和分市式数据对象的支持,是开发Neuron芯片应用程序的重要工具。其语法扩展包括软件定时器、网络变量、显式报文、多任务调度、EEPROM变量和附加功能等。其中,显示报文的使用为LON节点间的通信及互操作提供了基础。通过对不同节点分配网络地址,即可实现节点之间的数据传递。也就是说,LON接口卡中的3150通过构造和解析报文实现了与LON网用户节点的通信。 3.2 CY7C6801 3的开发工具 Cypress公司对CY7C680 1 3提供了较为完备的开发套件CY3681。它包括带128脚CY7C68013的硬件开发板、相应的控制面板(Control panel)和GPIF代码自动生成软件(GPIFT001)。对于内核8051的开发采用Keil开发工具。   3.3 LonWorks接口卡的软件设计 该接口卡的程序包含两大部分:一是存储在CY7C68013中的USB驱动程序和与3150的并口通信程序:二是存储在3150外部Flash中的并口通信程序以及LonTalk协议转换程序。USB驱动程序在开发套件CY368 1中已有支持用户,只要调用即可。而与31 50的并口通信程序则采用Keil C51语言编写,并通过usB口下载到CY7C68013的8051内核中。3150外部Flash中的并口通信程序以及LonTalk协议转换程序采用Neuron C语言编写,并采用LonWorks开发工具——LonBuilder中的Neuron C编译器对程序进行编译,生成ROM映像文件,最后下载到片外Flash中。 在8051的并口通信程序中,需要模拟3150的并口通信从A方式。以下为并口通信程序中主要模块的C51程序,包括同步模块(sync—loop());握手模块(hndshkO);并口数据传送接收模块(pio read();pio write(void));令牌传递模块(pass token())。 void sync-loop(void) {unsigned char rb; do{RW=0;hndshk();PB=CMD RESYNC;CS=0;CS=I;hndshk(); PB=EOM;CS=0;CS=1;hndshk();PB=0xff;RW=I;CS=0;rb=PB; CS=I;}while(rb!=CMD ACKSYNC);token=MASTER;} void hndshk(void) {while((hs=INTO)==1);} void pio_read(void) {unsigned char cmd;unsigned char i; PB=0xff;hndshk();RW=1;cmd=PB;CS=0;CS=1; if(cmd==CMD—XFER){hndshk();pio.1en=PB;CS=0;CS=1;} else pio.1en=o=pass—token();} void pio-write(void) {unsigned char sd; hndshk();RW=0;PB=CMD—XFER;CS=0;CS=1;hndshk0;PB=pio. 1en;CS=0;CS=1: for(sd=0;sd
编辑: 引用地址:http://www.eeworld.com.cn/designarticles/sensor/200703/9726.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved