智能温度传感器DS18B20的原理与应用

2006-11-06 14:29:32来源: 现代电子技术
DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

1DS18B20简介
?(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
?(2)在使用中不需要任何外围元件。
?(3)可用数据线供电,电压范围: 3.0" 5.5 V。
?(4)测温范围:-55 " 125 ℃。固有测温分辨率为0.5 ℃。
?(5)通过编程可实现9"12位的数字读数方式。
?(6)用户可自设定非易失性的报警上下限值。
?(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 
?(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

2DS18B20的内部结构

?DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图1所示。



?(1) 64 b闪速ROM的结构如下:



?开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。
?(2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。
?(3) 高速暂存存储器
?DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给E2RAM。而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如下:




?低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。



?由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。
?高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。



?当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0062 5 ℃/LSB形式表示。温度值格式如下:



?对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。表2是对应的一部分温度值。



?DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>TH或T < TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。

?(4) CRC的产生在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。



3DS18B20的测温原理
?DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小[1],用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
?另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同,可参看文献[2]。



4DS18B20与单片机的典型接口设计
?
以MCS51单片机为例,图3中采用寄生电源供电方式, P11口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管和89C51的P10来完成对总线的上拉[2]。当DS18B20处于写存储器操作和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10 μs。采用寄生电源供电方式是VDD和GND端均接地。由于单线制只有一根线,因此发送接收口必须是三态的。主机控制DS18B20完成温度转换必须经过3个步骤:初始化、ROM操作指令、存储器操作指令。假设单片机系统所用的晶振频率为12 MHz,根据DS18B20的初始化时序、写时序和读时序,分别编写3个子程序:INIT为初始化子程序,WRITE为写(命令或数据)子程序,READ为读数据子程序,所有的数据读写均由最低位开始,实际在实验中不用这种方式,只要在数据线上加一个上拉电阻4.7 kΩ,另外2个脚分别接电源和地。
5DS18B20的精确延时问题
?虽然DS18B20有诸多优点,但使用起来并非易事,由于采用单总线数据传输方式,DS18B20的数据I/O均由同一条线完成。因此,对读写的操作时序要求严格。为保证DS18B20的严格I/O时序,需要做较精确的延时。在DS18B20操作中,用到的延时有15 μs,90 μs,270 μs,540 μs等。因这些延时均为15 μs的整数倍,因此可编写一个DELAY15(n)函数,源码如下:



?只要用该函数进行大约15 μs×N的延时即可。有了比较精确的延时保证,就可以对DS18B20进行读写操作、温度转换及显示等操作。
6结语
?我们已成功地将DS18B20应用于所开发的“LCD显示气温”的控制系统中,其测温系统简单,测温精度高,连接方便,占用口线少,转换速度快,与微处理器的接口简单,给硬件设计工作带来了极大的方便,能有效地降低成本,缩短开发周期。
参考文献
[1]胡振宇,刘鲁源,杜振辉DS18B20接口的C语言程序设计[J]单片机与嵌入式系统应用,2002,(7)
[2]金伟正单线数字温度传感器的原理与应用[J].电子技术应用,2000,(6):6668

关键字:编程  单线  功率  处理

编辑: 引用地址:http://www.eeworld.com.cn/designarticles/sensor/200611/6838.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
编程
单线
功率
处理

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved