车牌定位在电子警察中的工程应用

2006-05-07 15:49:34来源: 电子技术应用

近年来,我国在城市和交通建设方面取得取巨大的进步。然而,面对越来越多的交通路口、收费站以及治安卡口,传统的人工值守显然已经满足不了要求。为解决这种现状,出现了适应信息化时代的计算机集成产品,即电子警察,并已经得到了广泛的应用。

    电子警察采用视频图像的识别技术,全天候进行车辆及道路的监控,对违规车辆进行抓拍,实现了城市道路交通的智能化管理,达到无人化值守。利用该系统可以迅速查明违章车辆、分析交通事故,为进一步整顿交通环境,交通管理科学化提供高效可靠的技术依据。

1 抓拍照片分析

   
出了性价比的原因,目前国内电子警察系统的图像获取单元一般都采用CCD工业电视摄像机,而且被架设在室外。现以闯红灯违章抓拍系统为例来分析抓拍的图像数据。

    (1)由于红灯的停车线靠近行人通道,造成图像背景特别复杂;

    (2)机动车的车型较多,车牌的位置各不相同;

    (3)拍摄图像时受天气、照明以及运行等因素的影响很大;

    (4)摄像机受路口实际条件的限制,可能距离较远,交有一定角度;

    (5)脏、旧车牌比较模糊,还有不少故意作弊的车牌。

    这种图像数据要比在实验室所用的数据恶劣得多,而且意想不到的情况也时有发生,这就给图像识别带来了极大的困难。

2 图像处理方案

   
通过多次实验检测,最终选用了图1所示的图像算是方案。

    对图像数据的灰度化、平滑、边缘检测、二值化以及旋转都属于图像的预处理部分。判定就是准确地定位车牌位置,接下来先对车牌进行字符分割,然后逐字提取待征,形成该字符的特片向量,将这个特征向量作为神经网络的输入,以便于字符识别。所以字符识别部分用一个三层的神经网络,先进行学习训练,得到收敛的一组权值。

    限于篇幅,本文只介绍图像预处理和判定部分,识别应用部分这里就不讨论了。

2.1 灰度化与平滑

    为了便于处理后的传输和存储,由CCD摄象机获取的图像通过图像采集卡采集到工控机或图像处理器件后,一般会转换成JPEG格式。这样处理的对象也就是JPEG文件,要进行灰度化,以去掉彩色信息,加快处理速度。灰度化的公式可以采用式(1)。

    g(i,j)=0.11×R(i,j)+0.59×G(i,j)+0.3×B(i,j)    (1)

    其中,g(i,j)处的灰度值,R,G,B分别为该点的三基色值。但是,定位车牌时亮度信息并不重要。鉴于在这个式子中,G基色占的比重最大,所以有理由灰度化时只取绿色信息就可以了。

    图像平滑的目的是为了消除噪声。噪声并不限于人眼所能看到的失真或变形,有些噪声只有在进行图像处理时才能发现。一般来说,图像的能量主要集中在其低频部分,而车牌的信息主要在高频部分,为了去掉高频干扰,有必要进行图像平滑。可以采用低通滤波的方法来去除噪声,为此要设计空间域系统的单位冲激响应矩阵。

    其中g(i,j),f(m,n)为灰度值,H为L×L阵列,又叫低通卷积模板。本文选用

2.2 边缘检测与二值化

    与平滑过程相反,边缘检测相当于高通滤波器,是为了的取图像中的高频部分。因为车牌上字符较密,所以这一部分的图像变化必然比其它区域高,这对于车牌定位是很重要的信息。边缘增强的方法很多,常用的增强算子有拉普拉斯算子、Sobel算子、Prewitt算子等。本文采用了一种Kirsch算子的改进形式。Kirsch算子是一种象素邻点顺时针循环平均求梯度的方法,它取如下的梯度图像作为检测结果:

    其中:Sk=Ak+A(k+1)+A(k+2)

    Tk=A(k+3)+A(k+4)+A(k+5)+A(k+6)+A(k+7)

    分别表示f(i,j)的八邻象素中顺时针排列的相邻三个象素和五个象素之的。规定A0为f(i,j)左上角的邻域。A的下标按模8计算,如图2所示。

    式(3)中大括号内的取极大值运算,其实就是求f(i,j)在8个方向上的平均差分之最大值,也就是f(i,j)梯度幅度的近似值[1]。

    通过这种运算后,图像中每象素点的值代表了该点的高频信息,从这些信息中要定位出车牌的位置,就必须进行二值化处理。二值化的方法有很多,但应用于工程上时,一个最大的问题就是阈值的选取,将它取为固定值显然是不合理的,因为环境总是变化的;可是将它放开后,又不能很好地跟踪图像的细微变化。针对这个问题,本文提出了一种反向积分求象素点的方法,使得二值化能自适应选择适当的阈值。

    定义边缘提取后,图像中各象素取值范围为[gmin,gmax],对于k∈[gmin,gmax],它出现的概率为:

    p(k)=[n(k)]/n    (4)

    其中:n(k)为图像中所有取值为k的象素点个数,n为图像总象素数。通过大量的实验,发现这个象素值-概率关系曲线无外乎两种情况,即图3和图4所示。要使定位效果达到最佳,阈值一定在曲线趋于平坦的点附近。

    设th∈[gmin,gmax]为最佳阈值,令:

    这时会发现不管是白天还是夜间,S总是在一常数附近,而这个差别对于象768×288这样的图像来说是微不足道的,完全可以将它定为一个常数来处理。虽然它也与图像的复杂程度有关,但这只会影响二值化后点的分布。车牌位置总是处于高频问好,对它的影响较小。这个现象也同时说明,要准确定位并不是二值化后保留的信息越多越好。

    既然将S取为常数,那么从gmax开始向积分(求和),就可以得出th,而且th会随着图像的亮暗程度、对比度自适应变化。

2.3 图像旋转与车牌定位

    在实际旋工中,镜头的架设常受到条件的限制,图像的倾斜程度特别大。这时,用图像的旋转不变距显然难以凑效,只有对图像进行旋转。而且这个角度的设定对具体的环境不再发生变化,知道了这个角度,也有利于汽车的运动轨迹判断。

    进行完前面的预处理工作后,定位车牌就容易了。对图像自下而上逐行扫描,在限定的模板宽度内,若变化频率达到一定次数,例如10次,则向下开始扫描,直到满足模板高度,则将车牌的模板进行一些调整,再继续搜索,还是找不到,就是没有车牌。对于多个候选的区域,可以进行粗略的聚类估计和简单的逻辑判断,以提高定位准确性。

3 运行结果

   
用这一套组合策略,对不同时间、不同交通路口、不同光照下抓拍的汽车图像进行车牌定位识别,定位结果如表1所示。

表1 定位结果分析

类   型 数量(输) 正确定位(输) 错误定位(输) 准确率(%)

轿车、出租车
中巴车
公共汽车
卡车

100
100
50
50
94
90
41
42
6
10
9
8
94
90
82
84

在选图时,夜间图像点20%左右。从上述结果,可以清楚地看出,公共汽车的准确率很低,这是因为公共汽车有许多广告和粘贴纸,造成了错误定位。卡车的车牌在车框下边,较为隐蔽,有些车牌特别脏,识别比较困难。而出租车和中巴车的错误定位大多是夜间图像引起的。还要说明一点,夜图图像在拍摄时加了红外补光系统。针对工程应用的水平,这个结果是令人满意的。

    本文只介绍了电子警察抓拍系统中车牌定位的内容。电子警察系统最大的困难就是受自然环境的影响特别大,而且安装时总是要去适应地形环境,所以拍摄到的图像有非常不好,并不象实验室处理的那么理想。因此要找到一种适应性较好的定位方法,只有舍弃许多优越的处理方法。本文使用的这种图像处理的策略,只设定几个参数,在特定的环境中可以实现二值化阈值的自适应调整,将车牌识别提高到工程应用的水平。总体上来说,具有较好的适应性。

编辑: 引用地址:http://www.eeworld.com.cn/designarticles/sensor/200605/1503.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved