4G无线技术:SoC架构在演进还是转折?

2008-01-08 11:10:03来源: EDN
      下一步无线技术可能证明是多核嵌入式处理的转折点。
  要 点
  第四代无线业务(或 4G)对不同的人群有不同的意义。
  设计者可以用当前的芯片架构实现部分功能。
  成本约束与功耗约束最终将被迫催生出一些架构创新。
  应用开发人员梦想的那种 4G 可能需要使用全新的架构。

  几乎神话般的第四代无线业务 4G 可能是考虑全新 SoC(单片系统)架构的起源。或者,它只是会推动今天基带无线 IC 的一次简单演化。它可能导致对消费客户的全新类型移动服务,也可能仅仅能更好地处理你的电子邮件。4G 的庞大工程挑战可能在 2015 年前成为现实,也可能发生在今后数年内。

 

图2IMEC研究者们设想一种可即时重新配置的资源阵列当带宽需要变化时它能立即在空中接口和在信道条件之间作转移

  要理解 4G 可能对 SoC 设计产生的影响,就必须深究一下人们使用这个词汇的意义,了解一些有关这种业务支持的计算挑战,并听听一些系统架构师如何应对这些挑战。

  有关 4G 影响的很多不同观点都是一个来源:缺乏清晰的定义。德州仪器公司无线首席技术官 Bill Krenik 警告说 :“我们必须由定义开始。因为围绕名词存在大量的争议与混乱,已经使它几乎失去了意义。”

  Krenik 说,很多人都认为 4G 表示一种到处存 
在无线连接的新世界,真正在任意时刻和任何地点,并且意味着这种连接可以支持交互、基于地点以及丰富媒体的服务。假想你走在一个不熟悉城市的街道上,手里抓着手机,看着它实时地连续显示出前方街道的运动图像以及地图数据、建筑物标记以及感兴趣的地点、到达目标的路径,以及你的地址薄中人员的位置。或再想像一下,同一部手机还能把城市的街道变成一个多人视频游戏,你与其它游戏玩家的化身、三维怪兽和武器竞逐争斗,并能表现出虚拟搏斗的逼真损伤图像。

  还有一些人通常把 4G 看成更具体的词汇,这些人必须实现该名词下的系统。Krenik 解释说:“在 TI,我们不会试图给 4G 下一个教条定义,而是更愿意用各种真实的技术名词:HSPA+(高速分组接入 plus)、WiMax、LTE(长期演进)。到 3G 时美国提出了一个标准,而其它所有事情都还只是意见。”他继续说,最好有一个组织,负责推广 GSM (全球移动系统)通信的部署以及向 3G 的演进。

  其它工程师则持有一种更定量的观点。Nokia Siemens Neetworks的高级射频产品经理Alan Brown说,这些工程师在定义LTE时同时推进 3GPP(第三代伙伴项目)方案,他们将4G构想成“对移动设备有100Mbps 峰值流量,对笔记本电脑等设备有1Gbps 峰值。”每种观点都对实现4G 手机的基带SoC提出了不同的期望。

  发展基带 SoC

  从最简单的预期开始(即 LTE 的预想),移动设备将以某种方式实现至少 100 Mbps 的峰值下载链路数据速率。飞思卡尔半导体公司副总裁兼高级研究员 Ken Hansen 说:“它要求的基带在功能上与我们今天用于 UMTS(全球移动电信系统)的基本上没有区别。”功能块包括用于采样率功能的硬件加速器、执行 MAC(介质访问控制)的 CPU 核、一个安全引擎,以及一个主控接口。

  来自射频的采样速率数据进入模数转换,经过一些前端数字处理,进入一个 FFT(快速傅里叶变换)引擎,它将 OFDM(正交频分复用)信号分离成多个组成频段。然后频域信号经过进一步数字调整,进入一个检波器,检波器对每个载波上的 64 QAM(正交幅度调制)信号作解码,从每个有效载波中生成一个符号。这些符号用增强的解码进行压缩。

  在这种架构中,3G 与 4G 之间的区别在于量的差异,而不是种类。高通公司 CDMA 技术产品管理高级总监 Peter Carson 指出:“在 3G 时,我们每赫兹带宽提取大约 1 bps。要实现 100Mbps 的流量,4G 基带必须做得远好于它:在更宽的频段上至少每赫兹提取 3 bps 或 4 bps。”

  实际应用中,这种情况意味着在一个 20 MHz 信道上分布着更多的载波频率,如与 UMTS 900 使用的 5 MHz 信道相比。这也可能意味着在 MIMO(多输入/多输出)结构中使用多根天线。今天,MIMO结构通常用于信道均衡:找到一种将两根天线信号组合在一起的方法,以获得最好的接收效果。但4G还有一些其它东西:用波束形成算法,使每对基站天线和接收机天线成为一个独立信道,这样能使有效带宽倍增。Hansen 说:“研究表明,在多接收机情况下,可以用两根天线获得1.75倍的数据速率。”

图2IMEC研究者们设想一种可即时重新配置的资源阵列当带宽需要变化时它能立即在空中接口和在信道条件之间作转移

 

  所有这些功能都需要硅片。较高的采样率和更宽的信道意味着一个更大、更耗电的ADC,以及一个更快、更宽的FFT引擎。但最大问题来自于提供一个100Mbps峰值流量的要求,这意味着更快的符号速率处理器、大量内存,以及一个用于MAC的更快处理器。Hansen说:“我们看到进入MAC的10倍数据速率,而某些事务的允许延迟只有1/10。但考虑功耗因素,MAC必须运行在远远低于码率的频率上。这个问题很有意思。”

       高通公司的Carson表示同意。“峰值数据速率直接转化为芯片尺寸。架构师必须自问的一件事:设定的峰值数据速率与所需芯片尺寸是否与网络实际提供的平均数据速率相适应。”

  如果对芯片成本有足够的惰性,则可以改进这种速率的基带架构。Carson 称高通当前的 Snapdragon 架构仍然可以完美地应对扩展至 30Mbps~40Mbps的峰值数据速率。这个速度并不满足 LTE 规范,但 LTE 迟些才会出现,有些人称它为晚期的演进,这可能使 32 nm CMOS 工艺有时间跳出这个架构。

        非演进式设计

  演进架构的第一个挑战来自于 MIMO。Infineon Technologies AG 的通信业务集团功能电话业务单位的 Thuyen Le 博士解释说:“MIMO 用于提高无线链路的质量。一种思想是用它作发射机和接收机的分集,以防止衰减。另一种思路是将衰减用于空间复用,这样就允许通过多个发射天线,同时传输独立的数据流,因而增加了用户的数据速率。不过这种方法取决于 
信道矩阵的情况是否良好。因此,根据两种想法,我认为实现高数据速率必须使用 MIMO。”

  过去空中接口设计者要采用一对接收天线来改善信道均衡,现在他们转向空间分集复用,建立多个实际信道,这样,重复的射频部分硬件数就大大增加。每个天线都需要自己的模拟前端和数字前端,而射频也需要为更多数字基带复制或增加流量(图 1)。这种要求本身并不强求架构创新(只是非常类似),但还有功耗问题。

  所有 4G 架构都有一个局限因素,即射频部分必须在当前功耗水平下处理 10 倍的峰值数据速率,腾出的电量用于能耗大大增加的应用级处理。研究公司 Forward Concepts 总裁 Will Strauss 估计,一部 4G 手机的计算功率最终将是当前 3G 手机的 100 倍。Strauss 认为:“所有人的最大希望都在 32 nm 工艺上,但现实是新工艺的能耗并没有下降这么多。你在动态功耗上获得好处,就要付出泄漏功耗的代价。这可能涉及到寻找新颖的架构和电源管理方法,否则就要随身备一块手机电池。”

  还有其它因素也驱使人们考虑新颖的架构。这就是前面所说到的,一是简单表述一个峰值数据速率(如 LTE 规范),另外则是想象一种新的手机使用方法(如很多正在向投资商宣讲 4G 的很多空想家),它们之间是不同的。


  畅想未来

  IMEC(大学间微电子中心)科学总监 Liesbet Van der Perre 称:“无疑现在还没有 4G 的明确定义。但我相信,我们应该是在谈论一个异质网络,它较现有网络能支持更高的移动性和数据速率。今天,如果是真正的移动应用,速度不会超过 2 Mbps,但 4G 应意味着10Mbps~20Mbps的实际流量。对良好的视频,至少要稳定的 10Mbps,而不是峰值,例如,3G的缺点之一就是它无法为良好的视频提供稳定的数据速率。”

  Van der Perre 及其它研究者描述了一种环境,它比今天无线网络可以实现的任何事情都更有活力。她评述说:“今天,一家手机硅片供应商面临的情况是 30 个空中接口、多个非连续的信道,以及很多同时运行、差异很大的业务。”但一家供应商的手机只支持其中一个小小子集,这就大大简化了复杂性。

  今后,为同时确保有足够的连续带宽(想象一下跟随移动手机的位置与方向而调整的实时视频)和能效(总是选择正好够用的带宽和用于当前混合任务的编码长度),一种移动设备可能要与多个供应商作连续协议,所有这些都要一次同时使用多个基站的许多空中接口(图 2)。突发数据、视频流、控制信息和键盘与摄像头的返回通道都可能实时地在不同服务上传送并切换。例如,保持摄像头静止,可以用 H.264 作运动补偿,从而大大减少将其连接到游戏服务器所需的码率。因此,这个动作能使射频控制器选择一个有较低码率的空中接口。

  Van der Perre 称,以这种世界观,用今天的硬件处理流水线结合专用块,就是一种中间的选择。她发现了可以设定的相似处理器的模块化、异质簇,以及一个可配置互连网络,它能实现实时动态处理器配置以及任务映射。在这一架构中,主动的能量管理技术也成为可能,包括快速的电压/频率调节、空闲部件的适度细粒度电源门控,以及算法在软件与硬件之间的敏捷移动。确实,这种方案可能是唯一一种满足真正4G终端能效需求的方法,尽管采用了32nm CMOS工艺。

  所有这些项目都在 IMEC 的各种研究项目中逐渐成形,也许这解释了 Van der Perre的世界观。但这远不是一种孤立的观点,至少私下是这样。各家公司都公开表示自己专注基于流水线的硬件架构,但只有一个颇有地位的业内消息人士称一些主要硅片供应商都有深度介入、大规模投资的研究小组,正在探索4G平台的大型多核架构。


       多数大型多核架构都有一个重要挑战,但大型多核架构在这里不是问题:高码率基带处理中的大多数负荷正是业内感觉为难的并行处理。仅靠分割数据方法难以分配任务。但设计成功的关键是系统控制、动态负载均衡,以及(也许是最重要的)能量管理工作,它们新颖而复杂。从这点看,4G 其实并不是革命性的,而是稳步的前进,在这个过程中,设计者要将全新的实时嵌入式处理锻造成形。

 

关键字:4G  SoC架构  动态负载  OFDM

编辑:吕海英 引用地址:http://www.eeworld.com.cn/designarticles/network/200801/article_17516.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
4G
SoC架构
动态负载
OFDM

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved