用CPLD实现单片机读写模块

2007-03-09 19:03:27来源: 互联网
摘要:介绍实现单片机与Xilinx公司XC9500系列可编程逻辑器件的读写逻辑功能模块的接口设计,以及Xilinx公司的XC9500系列可编程逻辑器件的开发流程。 关键词:复杂可编程逻辑电路 微处理器 在系统编程 现场可编程门阵列 1 概述 CPLD(复杂可编程逻辑电路)是一种具有丰富的可编程I/O引脚的可编程逻辑器件,具有在系统可编程、使用方便灵活的特点;不但可实现常规的逻辑器件功能,还可实现复杂的时序逻辑功能。把CPLD应用于嵌入式应用系统,同单片机结合起来,更能体现其在系统可编程、使用方便灵活的特点。CPLD同单片机接口,可以作为单片机的一个外设,实现单片机所要求的功能。例如,实现常用的地址译码、锁存器、8255等功能;也可实现加密、解密及扩展串行口等单片机所要求的特殊功能。实现嵌入式应用系统的灵活性,也提高了嵌入式应用系统的性能。 CPLD(复杂可编程逻辑电路)是一种具有丰富的可编程I/O引脚的可编程逻辑器件,具有在系统可编程、使用方便灵活的特点;不但可实现常规的逻辑器件功能,还可实现复杂的时序逻辑功能。把CPLD应用于嵌入式应用系统,同单片机结合起来,更能体现其在系统可编程、使用方便灵活的特点。CPLD同单片机接口,可以作为单片机的一个外设,实现单片机所要求的功能。例如,实现常用的地址译码、锁存器、8255等功能;也可实现加密、解密及扩展串行口等单片机所要求的特殊功能。实现了嵌入式应用系统的灵活性,也提高了嵌入式应用系统的性能。 2 Xilinx公司的可编程逻辑器件 Xilinx公司的XC9500系列可编程逻辑器件是一款高性能、有特点的可编程逻辑器件。它的系统结构如图1所示。从结构上看,它包含三种单元:宏单元、可编程I/O单元和可编程的内部连线。它的主要特点是: ①高性能。在所有可编程引脚之间pin-pin延时5ns;系统的时钟速度可达到100MHz。 ②容量范围大。Xilinx公司的XC9500系列可编程逻辑器件的容量范围为36~288个宏单元;可用系统门为800~6400个。 ③5V在系统可编程。可以编程10000次。 ④具有强大的强脚锁定能力。 ⑤每个宏单元都有可编程低功耗模式。 ⑥没有用的引脚有编程接地能力。 Xilinx的XC9500系列可编程逻辑器件的主要性能如表1所列。 3 CPLD同单片机接口设计 CPLD同单片机接口原理如图2所示。 CPLD同单片机接口设计中,单片机采用Atmel公司的AT89C52,CPLD采用Xilinx公司的XC95216。该CPLD芯片结构及性能见图1和表1。AT89C52通过ALE、CS、RD、WE、P0口(数据地址复用)同XC95216芯片相连接。 表1 Xilinx XC9500t系列器件 项 目 XC9536 XC9572 XC95108 XC95144 XC95216 XC95288 寄存器/个 36 72 108 144 216 288 可用门数/个 800 1600 2400 3200 4800 6400 宏单元数/个 36 72 108 144 216 288 fPD/ns 5 7.5 7.5 7.5 10 10 tSU/ns 3.5 4.5 4.5 4.5 6.0 6.0 tCO/ns 4.0 4.5 4.5 4.5 6.0 6.0 fCNT/MHz 100 125 125 125 111.1 111.1 fSYSTEM/MHz 100 83.3 83.3 83.3 66.7 66.7 注:fCNT=16位计数器最高工作频率;fSYSTEM=整个系统的最高工作效率。 ALE:地址锁存信号。 CS:片选信号。 RD:读信号。 WR:写信号。 AD0~AD7:数据地址复用信号。 本例的设计思想是,在XC95216设置两个控制寄存器,通过单片机对两个控制寄存器的读写来完成对其它过程的控制。 XC95216设置的两个控制寄存器,可以作内部寄存器,也可以直接是映射为I/O口。 图2 XC9516同单片机接口原理图 4 CPLD同单片机接口设置结果 本例中,使用Xilinx公司提供的Fundation ISE 4.2i+Modelsim 5.5f软件实现设计。实现设计的源文件模块如下: /************************** //MCU和XC95216接口程序 //目的:MCU读写XC95216 /**************************/ module mcurw(MCU_DATA,ALE,CS,RD,WE,CONREG1,CONREG2); inout[7:0]MCU_DATA;//单片机的地址数据复用信号 output[7:0]CONREG1,CONREG2;//内部控制寄存器 input ALE; //单片机的地址锁存信号 input CS; //单片机的片选信号 input RD; //单片机的读信号 input WE; //单片机的写信号 reg[7:0]LAMCU_DATA; //内部控制寄存器 reg[7:0]ADDRESSREG; //内部地址锁存寄存器 reg[7:0]CONREG1; //内部控制寄存器 reg[7:0]CONREG2; //内部控制寄存器 assign MCU_DATA=RD?8"bzzzzzzzz:LAMCU_DATA; initial //寄存器初始化 begin LAMCU_DATA<=0; ADDRESSREG<=0; CONREG1<=0; CONREG2<=0; end always@(negedge ALE) begin ADDRESSREG<=MCU_DATA; //地址锁存 End always@(posedge WE) begin if(!CS %26;amp;%26;amp;ADDRESSREG[0]= =0)) LAMCU_DATA <=CONREG1; //从地址为0的CONREG1寄存器读数据 else if(!CS%26;amp;%26;amp;(ADDRESSREG[0]= =1))LAMCU_DATA<=CONREG2; //从地址为1的CONREG2寄存器读数据 else LAMCU_DATA<=8"bzzzzzzzz; end else LAMCU_DATA<=8"bzzzzzzzz; End Endmodule 使用Modelsim 5.5f仿真结果如图3和图4所示。图中ALE、CS、RD、WE、MCU_DATA是测试激励源信号,代表AT89C52接口信号;CONREG1和CONREG2的内部寄存器;ADDRESSREG是内部地址锁存寄存器。 图3 CONREG1写过程 图4 CONREG1读过程 图3是CONREG1写过程。首先,在ALE信号的下降沿,锁存MCU_DATA的数据到ADDRESSREG内部地址锁存寄存器。然后,在WE信号的上升沿,把MCU_DATA(0XAA)的数据锁存到寄存器CONREG1。 图4是CONREG1读过程。首先,在ALE信号的下降沿,锁存MCU_DATA(0X00)的数据到ADDRESSREG内部地址锁存寄存器。然后,在RD信号的低电平期间,把MCU_DATA(0XAA)的数据锁存到寄存器CONREG1。 从图3和图4可以看出,对CONREG1寄存器的读、写过程完全满足进序要求,CONREG2的读写过程同CONREG1一样,也完全满足时序要求,实现了期望的功能。 结语 本文实现CPLD与单片机接口设计是笔者设计的高速采样设备的一部分,经实际验证完全正确。简单地修改该模块,笔者已成功地将其应用于多个CPLD或FPGA与单片机接口的项目中。
编辑: 引用地址:http://www.eeworld.com.cn/designarticles/eda/200703/11078.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved