可编程逻辑器件在数字系统中的应用

2006-05-07 15:49:51来源: 国外电子元器件

1 引言

随着半导体技术的发展,可编程逻辑器件在结构、工艺、集成度、功能、速度和灵活性等方面有了很大的改进和提高,从而为高效率、高质量、灵活地设计数字系统提供了可靠性。CPLD或FPGA技术的出现,为DSP系统的设计又提供了一种崭新的方法。利用CPLD或FPGA设计的DSP系统具有良好的灵活性和极强的实时性。同时,其价格又可以被大众接受。由于乘法器在数字信号处理系统中具有广泛的应用,所以本文以乘法器的处理系统中具有广泛的应用,所以本文以乘法器的设计为例,来说明采用可编程逻辑器件设计数字系统的方法。如果想使系统具有较快的工作速度,可以采用组合逻辑电路构成的乘法器,但是,这样的乘法器需占用大量的硬件资源,因而很难实现宽位乘法器功能。本文这种用于序逻辑电路构成的乘法器,既节省了芯片资源,又 能满足工作速度及原理的要求,因而具有一定的实用价值。

2 系统构成

该乘法器通过逐项移位相加来实现乘法功能。它从被乘数的最低开始,若为1,则乘数左移后再与上一次的和相加;若为0,左移后与0相加,直到移到被乘数的最高位。图1是该乘法器的系统组成框图。该控制模块的STAR输入有两个功能:第一个功能是将16位移位寄存器清零和被乘数A[7…0]向8位移位寄存器加载;第二个功能为输入乘法使能信号。乘法时钟信号从CLK输入,当被乘数加载于8位移位寄存器后,它由低位到高位逐位移出,当QB=1时,选通模块打开,8位乘数B[8…0]被送入加法器,并与上一次锁存在16位锁存器中的高8位相加,其和在下一个时钟上升沿被锁存到锁存器内;当QB=0时,选通模块输出为全0。如此循环8个时钟脉冲后,由控制模块控制的乘法运算过程自动中止。该乘法器的核心元件是8位加法器,其运算速度取决于时钟频率。

3 加法器的实现

加法器的设计需要考虑资源利用率和进位速度这两个相互矛盾的问题,通常取两个问题的折衷。多位加法器的构成有并行进位和串行进位两方式,前者运算速度快,但需占用较多的硬件资源,而且随着位数的增加,相同位数的并行加法器和串行加法器的硬件资源占用差距快速增大。实践证明,4位二进制并行加法器和串行加法器占用的资源几乎相同,因此,由4位二进制并行加法器级联来构成多位加法器是较好的折衷选择。以下为由两个4位二进制并行加法器级联构成8位二进制加法器的VHDL程序:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ADDER8B IS

PORT (CIN:IN STD_LOGIC;

A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

S :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

OUT :OUT STD_LOGIC);

END ADDER8B;

ARCHITECTURE struc OF ADDER8B IS

COMPONENT ADDER4B

PORT (CIN4: IN STD_LOGIC;

A4 : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

B4 :IN STD_LOGIC_VECTOR(3 DOWNTO 0);

S4 : OUT ST_D_LOGIC_VECTOR(3 DOWN-TO 0);

COUT4 : OUT STD_LOGIC);

END COMPONENT;

SIGNAL CARRY_OUT : STD_LOGIC;

BEGIN

U1:ADDER4B

PORT MAP(CIN4=>CIN,A4=>A(3 DOWNTO 0),B4=>B(3 DOWNTO 0),S4=>S(3 DOWNTO 0),COUT4=>CARRY_OUT);

U2 :ADDER4B

PORT MAP(CIN4=>CARRY_OUT,A4=>A(7 DOWNTO 4),B4=>B(7 DOWNTO 4),S4=>S(7 DOWNTO 4),COUT4=>COUT);

END struc;

在上面的VHDL描述中,ADDER4B是一个4位二进制加法器,其VHDL描述是:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ADDER4B IS

PORT (CIN4 :IN STD_LOGIC;

A4 :IN STD_LOGIC_VECTOR(3 DOWNTO 0);

B4:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

S4:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

COUT4:OUT STD_LOGIC;

EAND ADDER4B;

ARCHITEC_TURE behav OF ADDER4B IS

SIGNAL SINT :STD_LOGIC_VECTOR(4 DOWNTO 0);

SIGNAL AA,BB:STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN

AA<=‘0’&A4;

BB<=‘0’&B4;

SINT<=AA+BB+CIN4;

S4<=SINT(3 DOWNTO 0);

COUT4<=SINT(4);

END behav;

4 结束语

本文采用基于EDA技术的自上而下的系统设计方法,其设计流程如图2所示。该乘法器的最大优点是节省芯片资源,其运算速度取决于输入的时钟频率。如若时钟频率为100MHz,则每个运算周期仅需80ns,因而具有一定的实用价值。

编辑: 引用地址:http://www.eeworld.com.cn/designarticles/eda/200605/2285.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved