人工智能的最大未解之谜是什么?

2017-11-15 20:22:35编辑:鲁迪 关键字:人工智能  机器学习

 


  每天我们都在报道人工智能又解决了哪些问题,今天我们做一次逆向思考,人工智能尚未解决的问题有哪些?


  想要理解AI欠缺什么,最好的办法是描述一个需要将各种人类习以为常的认知能力结合在一起的场景。当代的人工智能和机器学习方法可以处理需要单一能力的问题(当然,处理效果各不相同),但整合这些能力却仍然是一个遥不可及的目标。


  想象一下你和你的朋友刚买了一个复杂的新棋类游戏,有一块精致的板子和各种各样的棋子、卡片以及复杂的规则。还没有人知道怎么玩它,所以你们拿出说明书。读完之后你们开始玩起来。有些人可能会犯一些错误,但几轮下来,每个人都学会了游戏规则,至少可以尝试赢得比赛。


  在学习这个游戏的过程中发生了什么?


  1.语言解析:读游戏规则的玩家必须将符号转换成口语。听游戏规则的玩家必须分析口语。


  2.模式识别:玩家必须把所朗读的单词和游戏中的物体连接起来。「十二面骰子」和「红方士兵」必须基于语言线索被识别出来。如果该说明书有插图,那么它们必须与现实中的物体相匹配。在游戏中,玩家必须识别出旗子和卡片的错综组合,以及事件发生的关键序列。优秀的玩家还会学习去识别其他玩家的游戏模式,从而有效建立起有关他人心理状态的模型。


  3.运动控制:玩家必须能够将棋子和卡片移动到棋盘上的正确位置。


  4.规则遵守与规则推断:玩家必须理解规则并检查规则是否得到了正确的应用。在掌握了基本的规则之后,优秀的玩家还应该能够发现更高级别的规则或有助于他们取得胜利的倾向。这种推论能力与塑造他人思维模型的能力密切相关。(这在心理学中被称为心智理论,theoryofmind)。


  5.社交礼仪:玩家之间是朋友伙伴的关系,即使有些玩家犯了错误或扰乱了游戏进程,也应当友好相处。(当然,我们知道这并不总会发生。)


  6.处理干扰:如果门铃响了,外卖到了,玩家们必须能够从比赛中抽身,与送货人打交道,然后再投入到比赛中,回忆起游戏的进展,譬如轮到谁了。


  在所有这些子问题中,AI至少取得了一些进展。但目前这一轮人工智能/机器学习领域的爆发主要还是模式识别技术进步的成果。


  在当前的某些特定领域,人工智能的模式识别水平已经优于人类。但也有各种各样识别失败的情况发生。人工智能方法识别物体和序列的能力还不如人类模式识别那样鲁棒。


  人类有能力创造出各类不变性表示。例如,即使视角不同、存在遮挡物、光照条件变幻莫测,人类仍然能够识别出特定的视觉模式(译者注:比如可以在黑暗里凭借眼睛认出一只猫,看到被建筑物遮挡到只剩一个尾灯的车,仍然能自动识别出车在建筑物后的位置)。我们的听觉模式识别技能或许更加出彩,能够在噪音干扰以及速度、音高、音色和节奏的起伏中识别出乐句。


  毫无疑问,人工智能将在这一领域取得稳步进展,但我们不知道随着单个领域识别能力的不断进步,将已习得的表示在新环境中泛化(generalize)的能力是否也会随之提高。


  现有的人工智能游戏玩家都无法解析这样一句话:「这个游戏就像太空版的《卡坦岛》(ThisgameislikeSettlersofCatan,butinSpace)」。语言解析可能是人工智能最为棘手的部分。人类可以使用语言获取新信息和新技能,部分原因是我们拥有关于世界的丰富的背景知识。此外,我们可以利用上下文来十分灵活地运用这些背景知识,因此我们可以辨别出内容之间相关与否。


  对旧知识的泛化和重用隶属于一个更为广泛的能力:多技能整合。可能我们目前的方法还达不到生物智能那样轻易实现大规模能力集成。


  一个常见的能力集成方面的挑战是符号接地问题(symbolgroundingproblem)。即符号系统(例如数学符号或语言中的词)如何与感知现象——视觉、声音、纹理等相连接。


  粗略地说,人工智能方法分为两类:符号化(symbolic)和亚符号化(sub-symbolic)。符号化方法被用于「经典的」或「传统的」人工智能。它们非常适用于基于规则的确定性场景,比如下棋(但通常我们必须预先编码好规则)。如果人类提前做了符号接地(symbol-grounding),符号处理过程就会很轻松。如果让人工智能直接处理「原始」输入信息,比如光、声音、纹理和压力这些数据,效果就没那么好了。


  在另一个极端,我们有亚符号方法,如神经网络(深度学习网络是其中的一种)。这些方法接收原始输入信息的数字化版本——像素、声音文件等作为输入。亚符号方法适用于许多形式的模式识别和分类问题,但是我们仍然没有可以从类别标签转换到基于规则进行操纵的符号系统的可靠方法。


  所以综上所述,想要了解人工智能问题的范畴,首先要了解智力本身——它远比模式识别复杂得多。我们需要能够建立起模式与符号表示系统之间的双向连接,使语言的和基于规则的思维能够整合在一个具身代理中,与现实世界进行实时的交互。


关键字:人工智能  机器学习

来源: Quora 引用地址:http://www.eeworld.com.cn/afdz/article_2017111511295.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:人工智能助力图像技术发展 安防行业如虎添翼
下一篇:云边融合是视频技术智能应用的发展趋势

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

特斯拉来华背后竟然隐藏着这么大的“玄机”?

的干将,并密集向中国媒体发声。 贸易战阴云之下,一些美国的高科技企业却并未放缓入华的步伐。在科技领域,大数据、云计算和人工智能等板块,新一轮外企正在悄无声息间“抢滩”登陆。“ICT(信息通讯技术)行业一直是中国开放时间较早、开放程度较高、利用外资比较多的行业。当前,在中国经济新常态下,随着中央和各地方政府积极推动产业转型升级、鼓励创新,及进一步扩大开放、放宽外商投资市场准入、不断优化营商环境等新举措,外商科技型企业在华投资面临更有利的经营环境,包括政策支持、消费升级认同和市场潜力等。”商务部研究院跨国公司研究中心主任何曼青对经济观察报记者说,这些外资企业在中国正在寻找新的商机。“科技型外商投资企业与中方加强合资合作利于双方
发表于 2018-07-17 20:37:24

从备受争议的自动驾驶谈人工智能

近年来,结合了感知、融合、决策、控制的自动驾驶技术无疑是近年最火的研发领域之一。这得益于现在人工智能技术的发展,但是在ThoughtWorks大数据团队首席科学家王晓雷看来,人工智能不是万能的,深度学习也可能被“愚弄”。 在近日举行的2018 ThoughtWorks技术雷达峰会上,王晓雷进行了主题为《自动驾驶——人工智能的能与不能 》的演讲,并结合自动驾驶技术的最新发展,分享了我们对于真实世界中,关于智能算法的长处和局限性的一些思考。 从备受争议的自动驾驶谈起2015年5月,工信部发表《中国制造2025》,将智能车联网提升到国家战略高度。至今三年时间里,各项政策层出不穷,甚至开放了包括北京上海的部分道路在内
发表于 2018-07-17 20:13:33

无人驾驶汽车是否需要被监管?

一、泛人工智能领域国内投融资动态1.1 国内投融资动态 表1.1 泛人工智能领域国内投融资动态(2018年7月第2周摘选)  1.2 投融资热点小结 图1.1 上海泛人工智能领域创投趋势变化  二、泛人工智能领域发展趋势和政策地方动态2.1 国外动态精选2.1.1 美国智能音箱超过5440万:亚马逊市场份额第一 据外媒QUARTZ给出的数据,目前美国市场上的智能音箱已经超过5400万台。其中占据市场份额最大的分别是亚马逊和谷歌,前者占据美国市场61.9%,后者则是26.9%,苹果的Home Pod则是占据4.1%。另外,美国用户常常用智能音箱的功能分别是听音乐
发表于 2018-07-17 20:12:20
无人驾驶汽车是否需要被监管?

存算一体化与人工智能的完美融合

最近芯片成为了创新行业的一个高频词,以芯片为代表的集成电路产业被誉为是工业粮食,也是数字经济和信息交互不可或缺的核心技术,然而在中国芯片行业当中有一句俗话叫做“除了水和空气,剩下的都是从国外买的”,听起来似乎是很夸张,但实际上一点也不夸张,除了技术之外,过高的芯片成本也成为了拦路虎阻碍其行业的发展。如何降低芯片的成本以及提高运算效率是当今各大企业所考虑的首要难题。 在安创成长营第五期Demo Day上,一家来自北京的芯片创业公司介绍了她们最新的低功耗低成本的存算一体芯片。北京知存科技有限公司是一家专注于开发基于存算一体的人工智能芯片创业企业。虽然现在AI已经是当今社会的发展方向,但是它仍旧处于发展早期阶段,按照人工智能
发表于 2018-07-17 11:54:10

轻智能技术:典型的应用场景有哪些?

人工智能、机器学习和深度学习这三者到底是什么关系,又能实现哪些功能呢?ABCD(即人工智能、区块链应用、云计算、大数据)是科技行业的发展趋势和未来。麦肯锡2013年就预测过,到2025年移动互联网、自动学习、物联网、云计算、机器人和自动驾驶这些新技术能够创造的社会价值。但目前来看这个数据是被低估了,这几年发展得太快。所有这些都是由AI推动的新的领域与应用场景。那人工智能、机器学习和深度学习这三者到底是什么关系,又能实现哪些功能呢?日前,在ASPENCORE旗下《电子工程专辑》、《EDN》和《国际电子商情》共同举办的“IoT技术与应用论坛”上,恩智浦半导体大中华区客户应用方案与技术部门资深工程师李俊祥在其“恩智浦人工智能
发表于 2018-07-16 20:19:44
轻智能技术:典型的应用场景有哪些?

中美人工智能角力:中国在AI领域实力追赶美国?

当你在搜索网站上输入“AI”、“美国和中国”这样的关键词时,你会发现,诸如“中国和美国要在AI领域一决胜负”、“中国想要超越美国在AI领域的领先地位”和“AI军备竞赛:中国和美国竞争大数据主宰权”这样的新闻标题,扑面而来。从媒体报道的“热情”上来看,观察人工智能产业的一个重要维度,已经落点在了中国对美国的追赶上。而就在6月25日,官方机构中国科学院文献情报中心和科睿唯安联合发布了《G20国家科技竞争格局之辩》系列报告,这份报告指出,在G20国家中,中国在科研和技术创新力方面表现突出,在人工智能领域的科技实力仅次于美国,且增速明显。与此同时,面对这场两国间的“近身肉搏战”,有言论称一场人工智能领域的科技冷战已经打响。AI专家Ian
发表于 2018-07-16 19:33:47

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved