datasheet

人工智能高效破解网站验证码

2017-10-27 19:04:21来源: 新华社 关键字:人工智能  深度学习

为了核查登录用户是否为真人,世界各地的网站广泛使用复杂的验证码技术。但一项新研究说,人工智能已可高效破解验证码,比如识别出变形的文字等。美国凡思智能公司研究人员26日在美国《科学》杂志上发表论文,提出了一个用于物体识别的计算机视觉模型——递归皮层网络,其核心是模拟人脑基于形状对物体进行辨别的机制开发出一种新型算法,让计算机同样能够基于形状来识别物体。

《科学》杂志的介绍说,这代表人工智能研究取得了“关键性进展”。

论文作者之一、凡思智能商业化总监楼兴华告诉新华社记者,传统的深度学习算法需要非常庞大的数据作支撑,而递归皮层网络强调在模型建构中引入高效的先验知识,所以只需要很少量数据就可以达到类似甚至更好的识别效果。

他说:“如果用人脑的工作方式来打比方,深度学习的工作逻辑更接近于机械的记忆和经验,而递归皮层网络技术还包括了更智能的推理和演绎。”

具体而言,在实际应用中,只需要提供给递归皮层网络描述物体形状的训练图片,计算机就能成功将目标物体从复杂背景中分离。实验显示,递归皮层网络可以有效识别真实场景中的文字,并具有较好的通用性,即一个模型有效破解不同变体的验证码,比如变形的文字和复杂背景中的验证码。

楼兴华说,递归皮层网络对数据的利用效率是一些深度学习算法的300倍,超过以往很多优秀的验证码破解算法,而且通用性强,是人工智能领域继目前流行的深度学习算法之后的最新学术成果。

“我们在研发过程中把破解验证码问题作为一个具体的应用场景。但这不是该算法的主要应用,更不是该算法的建构初衷,”他说,“该算法对于工业流水线自动化、智能化有广泛的应用前景。如我们可以通过较少量数据模拟适应不同的工业应用场景,大大提升工业机器人的智能水平和生产效率。”


关键字:人工智能  深度学习

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/article_2017102711164.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:智能门锁市场大热 这几大趋势你不可不知
下一篇:3D传感器如何引领人工智能行业变革

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

网友正在学习IC视频

推荐阅读
全部
人工智能
深度学习

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved