datasheet

昔日导航“心脏”已成为智能生活的明日之星

2017-10-16来源: 麦姆斯咨询 关键字:导航  传感器  惯性测量单元

IMU,Inertial Measurement Unit,即惯性测量单元。如今IMU已不仅限于专业导航中使用,其应用范围涉猎广泛:远至军事防御、航空航天、海事等领域,近至日常的微信定位、智能手机、汽车/火车、无人驾驶、智能家居等方面均会使用。

MEMS-IMU发展之路“前途广阔”

基于传统惯性器件的特点,将MEMS与之结合可极大地改善传统惯性器件的缺点。MEMS是将微电子技术和机械工程融合到一起的工业技术,伴随着制作集成电路的硅半导体工艺的完善,20世纪80年代出现的微型机械、微型传感器和微型执行器的微机械制造技术,使得MEMS技术成为现实产品,满足不同需求的应用领域。根据对MEMS-IMU精度要求不同,大概可将其分为低精度、中精度和高精度三类。

(1)低精度MEMS-IMU

应美盛(InvenSense)旗下的 ICM-20602 6轴惯性传感器(3轴加速度计 + 3轴陀螺仪)全面支持谷歌 Daydream 和 Tango 的要求,可批量生产应用于 Daydream 认证和兼容Tango的智能手机,以构建的 VR/AR 生态系统。这便是低精度MEMS-IMU应用的一个成功案例。总结来看低精度MEMS-IMU主要用于消费电子类的产品,其应用范围极为广泛,可用于手机、游戏机、音乐播放器、无线鼠标、数码相机、硬盘保护器、智能玩具、计步器、防盗系统等。与环境传感器等器件结合,可实现助听、运动感测等功能。这类低精度的MEMS-IMU主要要求是:单价低、尺寸小、温度范围窄。

应美盛ICM-20602 6轴惯性传感器

低精度MEMS-IMU:加速度计尺寸小、重量轻、功耗低,一般测量范围1~50g,分辨率2mg~10mg,陀螺仪一般量程在±300°/s,零偏在500°/h~1000°/h范围内。

(2)中精度MEMS-IMU

相比低精度MEMS-IMU,中精度MEMS-IMU主要用于汽车级及工业级产品。

在汽车级产品中,中精度MEMS-IMU不仅可用于GPS 辅助导航系统,而其对于车电子稳定系统、汽车安全气囊、车辆姿态测量也有奇效。例如IMU可以用作高精度定位、汽车自身姿态的判断,即使在GPS信号丢失或有阻隔的情形中,IMU也可为汽车提供可靠的信息,这便可确保汽车主动安全,是自动驾驶的关键组件之一。再比如,近些年汽车车身稳定系统的标配ESP中,IMU就是其中的关键组件。汽车级可作为一个工业应用的特殊产品,对其可靠性要求高,同时由于需求数量大,和一般工业要求不同的是要求单价低。

在工业级产品中,中精度MEMS-IMU可应用于精密农业、工业自动化、大型医疗设备、机器人、仪器仪表、工程机械等。还记得,Atlas高端类人机器人惊人的平衡感吗?那个摔倒了还可以自己爬起来的神奇机器人,其超强的平衡感要部分归功于其体内的IMU。说起在工业领域使用的惯性传感器,大多以模块形式出现,对于应用于工业级芯片级产品,还必须进行处理,包括软件和硬件电路,以及对不同工业环境的适应性,大多数要求价格适中,精度要求要优于应用于消费电子类的传感器。

Atlas高端类人机器人

中精度MEMS-IMU:加速度计的量程选择比较宽1~500g,分辨率1mg~3mg,陀螺仪量程大多250°/s以内,零偏在50°/h~200°/h范围内。

(3)高精度MEMS-IMU

高精度IMU可解决复杂航空航天系统中惯性传感器的部署难题,如航空电子系统所采用的IMU是ADIS16485/8,满足一切性能和可靠性目标。高精度MEMS-IMU主要用于军用级和宇航级产品,要求高精度、全温区、抗冲击等。主要应用于通讯卫星无线、导弹导引头、光学瞄准系统等稳定性应用、飞机和导弹飞行控制、姿态控制、偏航阻尼等控制应用、以及中程导弹制导、惯性GPS导航等制导应用、远程飞行器、船舶仪器、战场机器人等。军工级或宇航级的MEMS-IMU精度要求高、工作温度范围宽,某些兵器产品要求抗冲击能力强,尺寸要比光纤和机械类产品更小。

ADIS16488惯性测量单元

高精度MEMS-IMU:加速度计量程范围比较宽1g~5000g,分辨率要0.1mg~1mg范围内,甚至更高。陀螺仪量程要求范围宽20°/s~1000°/s,频率响应高,要求在50Hz~1000Hz之间,零偏稳定性在1°/h~50°/h范围内。

如今MEMS-IMU正在向更高集成度和更高精度的方向发展。其中MEMS陀螺仪的发展极为明显,其性能也在接近或者已经达到战术级应用的水平;而MEMS加速度计是商业市场化最为成功的,其精度已经能够满足战略导弹的应用要求,但目前MEMS加速度计的精度水平还不是很高。MEMS惯性器件在结构设计、制作工艺、集成化、电路设计、封装及试验系统等方面还存在许多的问题,需要进一步解决。MEMS惯性传感器的研究热点和发展方向是精度高、环境适应能力强和多传感器集成化等,其中MEMS惯性传感器件的设计和制造元器件所需的生产工具也是一个重要的研究方向。

IMU简介

IMU,惯性测量单元,是一种使用加速度计和陀螺仪来测量物体三轴姿态角(或角速率)以及加速度的装置。狭义上,一个IMU 内在正交的三轴上安装陀螺仪和加速度计,共 6 个自由度,来测量物体在三维空间中的角速度和加速度,这就是我们熟知的“6轴IMU”;广义上,IMU可在加速度计和陀螺仪的基础上加入磁力计,可形成如今已被大众知晓的“9轴IMU”。

其中加速度计检测物体在载体坐标系统独立三轴的加速度信号,而陀螺仪检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。IMU在导航中的核心价值无可替代,为了提高其可靠性,还可以为每个单轴配备更多种类的传感器。为保证测量准确性,一般IMU要安装在被测物体的重心上。

一种IMU原理示意图

影响IMU性能的主要因素

MEMS-IMU主要误差源

将IMU的误差源归类后主要有以下四类:

(1)加速度计影响因素

在IMU中,加速度计对其的影响主要体现在加速度计的精度和稳定性两个方面。其中加速度计的高精度是为保障后续数据处理的精确性,加速度计的稳定性则是直接影响IMU能否发挥出正常性能的关键因素。

其中加速度计精度可采用6位置静态标定法。将IMU器件安装完毕后,按照下图的六个位置分别收集三个方向加速度计的数据。

加速度计静态六位置

(2)陀螺仪影响因素

陀螺仪对IMU的影响主要体现在其精确性上,其精确性将直接影响姿态解算的优劣程度,换句话说,最后IMU能否正确感知产品的姿态就是依靠陀螺仪的精确性。

陀螺仪误差模型与加速度计类似,采用的标定方法是动态旋转的,将IMU置于单轴转台中,令每个轴向上、向下,并分别以50°/s、100°/s、150°/s、200°/s、250°/s的转速转动正反方向,并收集足够的数据。

陀螺仪的动态标定

除精确性外,MEMS陀螺的性能指标主要有:标度因数(与比例因子互为倒数)、标度因数非线性、零偏、零偏稳定性、零偏重复性。这些指标系统的反映了陀螺仪的性能,因此有必要对其进行相应的测试,掌握其具体的指标参数。

(3)温度影响因素

MEMS惯性器件在温度发生变化时,其精度会产生较大的差异,一般情况下,惯性器件的工作环境不可能是恒温环境,尤其是陀螺的精度受到严重影响,因此温度的影响不能忽略,以陀螺仪为例,置放惯性器件于恒温转台中试验,并在不同温度下收集数据。

微惯性器件的温度试验

(4)IMU产品化后主要影响因素

A.信噪比低

信噪比低会造成使用IMU的产品不敏感,因此最棘手的问题便是降噪。一般此种情况可利用小波降噪,对信号进行消噪实际上是抑制信号中的无用部分,增强信号中的有用部分的过程。

惯性器件常用的消噪过程为:a. 信号的小波分解,选择一个合适的小波并确定分解的层次,然后进行分解计算;b. 小波分解高频系数的阈值量化,对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理;c. 小波重构,根据小波分解的最底层低频系数和各层分解的高频系数进行一维小波重构。其中最关键的是如何选择阈值以及进行阈值量化处理,它直接关系信号消噪的质量。

B.漂移大/延迟大

对于信号延迟问题,MEMS的常用器件都有存在,在IMU产品中极为明显。国外研究机构提出利用惯性误差旋转调制技术,来解决延迟问题。惯性误差旋转调制技术实质上是一种误差自补偿技术,利用IMU周期性转动完成对惯性器件慢变误差的调制,是在现有器件精度的条件下实现更高导航精度的有效方法。采用误差调制技术的惯性导航系统结构发生了变化,旋转机构的存在导致陀螺仪和加速度计与载体不再固连,但解算依然采用捷联算法,因此这种惯性导航系统被称为旋转调制型捷联惯性导航系统。


关键字:导航  传感器  惯性测量单元

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/article_2017101611097.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:人工智能:网络安全的关键“盟友”
下一篇:想要选购智能锁?看完这篇文章就够了

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

高德地图联手达摩院推出车载AR导航,为驾驶员提供实景导航体验

10月17日消息,高德地图今日宣布与达摩院达成合作,共同推出车载AR导航。据高德透露,该产品借助高德地图专业的交通大数据和车道级导航引擎,以及双方合作共建的图像识别AI技术能力,将真实的道路场景与虚拟的导航指引有机结合,能够为驾驶员提供直观的实景导航体验。该产品计划首批应用在智能后视镜上,做能力验证,后续重点将拓展至仪表盘、车机中控屏以及HUD平视系统等更多使用场景,针对不同的展示载体打磨最优的用户体验效果。(高德地图车载AR导航可在复杂路口处进行清晰的方向指引)众所周知,传统导航在人们在使用时需要一定的理解成本,尤其一些复杂的岔路口,理解起来需要更长时间。所以,哪怕只是几秒,在高速行驶过程中就有可能错过关键路口。据亿欧汽车了解
发表于 2018-10-17
高德地图联手达摩院推出车载AR导航,为驾驶员提供实景导航体验

丰田和Line公司将于明年夏天提供语音控制的人工智能导航

北京时间10月16日消息,据国外媒体报道,丰田汽车公司和社交APP提供商Line Corp周一宣布,他们将在明年夏天为丰田汽车推出一个带有语音命令功能的人工智能平台。据悉,丰田汽车未来的导航服务将使用Line的Clova(云虚拟助手)自动系统,这是一个基于云的AI平台,可以理解语音命令和作出响应。两家公司称,该系统将连接到丰田的车载设备。社交APP提供商Line Corp是目前亚洲最大的通讯、社交、技术提供商,在人工智能和互联网技术领域有强大的实力。目前,Line Corp是多个重要汽车制造商的合作伙伴。按照这种新平台的技术,丰田司机可以使用“告诉我如何去东京铁塔”,或者“告诉我在东名高速公路上的交通状况”类似的语音命令。据丰田
发表于 2018-10-16

被高德地图追上,百度地图该如何继续保持自身优势?

曾经,在那个没有电子地图或电子地图还没有普及的时代,人们出行要么靠四处问人,要么靠纸质地图。不知道有多少人经历过那种场景:走出火车站的时候,第一个向你迎上来的是那些卖纸质地图的大妈。那个时候要出远门的人们,在出行之前总会先查看地图,接着打印路线,或者可向一些收费的报刊亭问路等。但自从电子地图出现之后,大妈们只能无奈转行了……正经说起来,地图导航类应用还是从人们对“衣食住行”中“行”的需求点出发的。其一开始,也只是作为简单的出行工具而已,但随着市场的变化以及人们需求的多样化发展,这一应用也逐渐进化成为基于地理位置提供全方位的服务平台。如今在地图导航类市场上,出现不少玩家,有高德地图、百度地图、腾讯地图、搜狗地图、谷歌地图、凯立德导航
发表于 2018-10-11

解读自动驾驶关键技术报告:惯性导航和背后的芯片大战

惯性导航系统由于具有的输出信息不间断、不受外界干扰的独特优势;同时可以将多种传感器的信息以及车身信息进行更深层次的融合,为决策层提供精确可靠的连续的车辆位置,因而将成为自动驾驶定位信息融合的中心。随着智能驾驶的兴起和快速发展,预计惯性传感器在 2018 年的全球市场空间为1.6 亿美元,到 2022 年将达 9 亿美元。自动驾驶的前世今生智能汽车的终极目标是利用各种技术实现使车辆按照人的意愿自动行驶到达目的地。这个目标的关键是利用车载传感系统和信息终端实现与人、车、路等的智能信息交换,使车辆具备智能的环境感知能力,能够自动分析车辆行驶的安全及危险状态。世界各国及各大汽车公司都在布局自动驾驶。自上世纪 70 年代开始,自动驾驶汽
发表于 2018-09-19
解读自动驾驶关键技术报告:惯性导航和背后的芯片大战

意法半导体推出Teseo-LIV3F全球导航卫星系统模块

意法半导体正在降低其Teseo III卫星导航接收器芯片的使用门槛,为让开发社区有更多的工程师能够使用这款芯片,推出了Teseo-LIV3F全球导航卫星系统模块。为加快应用开发周期,该模块集成了重要的基本接收功能,并新增高达16Mbit的闪存,使得固件更新或数据记录不再需要备用电池。 高精度、快速响应与低功耗兼备的意法半导体Teseo III多卫星系统接收器芯片受到汽车和工业专家的高度好评。现在,Teseo-LIV3F模块的推出让本身欠缺射频专业知识的设备厂商和小型工程团队能够利用Teseo III的产品优势,研发工业用、消费级产品和服务系统,例如:车辆跟踪器、无人机、防盗设备、宠物定位器、车队管理、路桥收费、共享汽车
发表于 2018-09-14
意法半导体推出Teseo-LIV3F全球导航卫星系统模块

精准定位,首款国产双频北斗导航定位芯片问世

9月6日,在四川绵阳举行的第七届中国卫星导航与位置服务年会暨中国北斗应用大会上,深圳华大北斗科技有限公司面向智能手机超精准定位,发布了首款国产双频北斗导航定位芯片,将智能手机带入双频北斗超精准定位时代。众所周知,伴随我国北斗三号卫星的高密度发射,加之GPS、伽利略、格洛纳斯等其它GNSS系统,导航定位可以使用的资源越来越多,不仅是卫星星座数量的提升,在信号体制方面也发生了改变。除了有北斗B1I和 GPS L1频点外,还加入了BDS B3I, B2a和GPS L2,L5频点。与此同时,随着科技进步和社会发展,人们对导航定位精准度的要求也在不断提升,这在大众化消费类应用市场尤为凸显。前段时间,某知名国产手机厂商发布全球首款双频GPS超
发表于 2018-09-07

小广播

热门活动
换一批
更多

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved