datasheet

利用深度学习和计算机视觉进行面部表情分析

2017-08-12来源: 互联网 关键字:深度学习  计算机视觉  面部表情

识别面部表情和情绪是人类社交初期阶段的一项基本且非常重要的技能。人类可以观察一个人的面部,并且快速识别常见的情绪:怒、喜、惊、厌、悲、恐。将这一技能传达给机器是一项复杂的任务。研究人员通过几十年的工程设计,试图编写出能够准确识别一个特征的计算机程序,但不得不反复重新开始,以识别出只有细微差别的特征。 如果不对机器进行编程,而是教会机器精确识别情绪,这样会如何呢?

深度学习技能对于降低计算机视觉识别和分类的错误率展现出了巨大的优势。在嵌入式系统中实施深度神经网络(见图1)有助于机器通过视觉解析面部表情,并达到类似人类的准确度。

 

图1. 深度神经网络的简单例子

 

神经网络可通过训练而识别出模式,而且如果它拥有输入输出层以及至少一个隐含的中间层,则被认为具有“深度”识别能力。每个节点从上一层中的多个节点的加权输入值而计算出来。这些加权值可经过调整而执行特别的图像识别任务。这称为神经网络训练过程。

例如,为了训练深入神经网络识别出面带开心的照片,我们向其展示开心的图片作为输入层上的原始数据(图像像素)。由于知道结果是开心,网络会识别图片中的模式,并调整节点权重,最大限度减少开心类别图片的错误。每个显示出开心表情并带有注释的新图片都有助于优化图片权重。凭借充足输入信息的训练,网络可以摄入不带标记的图片,并且准确地分析和识别与开心表情相对应的模式。

深度神经网络需要大量的计算能力,用于计算所有这些互连节点的权重值。此外,数据内存和高效的数据移动也很重要。卷积神经网络 (CNN)(见图2所示)是当前针对视觉的深度神经网络中实现效率最高的。CNN之所以效率更高,原因是这些网络能够重复使用图片间的大量权重数据。它们利用数据的二维输入结构减少重复计算。

 

图2. 用于面部分析的卷积神经网络架构(或示意图)举例

 

实施用于面部分析的CNN需要两个独特且互相独立的阶段。第一个是训练阶段。第二个是部署阶段。

训练阶段(见图3所示)需要一个深度学习框架 – 例如Caffe或TensorFlow – 它采用CPU和GPU进行训练计算,并提供框架使用知识。这些框架通常提供可用作起点的CNN图形范例。深度学习框架可对图形进行微调。要实现尽可能最佳的精确度,可以增加、移除或修改层次。

 

图3. CNN训练阶段

 

在训练阶段的一个最大挑战是寻找标记正确的数据集,以对网络进行训练。深度网络的精确度非常依赖训练数据的分布和质量。面部分析需考虑的多个选项是来自面部表情识别挑战赛 (FREC) 的情感标注数据集和来自VicarVision (VV) 的多标注私有数据集。

部署阶段(见图4所示)针对实时嵌入式设计,可在嵌入式视觉处理器上实施,例如带有可编程CNN引擎的Synopsys DesignWare® EV6x嵌入式视觉处理器。嵌入式视觉处理器是平衡性能和小面积及更低功耗关系的最佳选择。

 

图4. CNN部署阶段

 

标量单元和向量单元采用C和OpenCL C(用于实现向量化)进行编程,而CNN引擎不必手动编程。来自训练阶段的最终图形和权重(系数)可以传送到CNN映射工具中,而嵌入式视觉处理器的CNN引擎可以经过配置而随时用于执行面部分析。

从摄像头和图像传感器捕捉的图像或视频帧被送入嵌入式视觉处理器。在照明条件或者面部姿态有显著变化的识别场景中,CNN比较难以处理,因此,图像的预处理可以使面部更加统一。先进的嵌入式视觉处理器和CNN和异构架构允许CNN引擎对图像进行分类,向量单元会对下一个图像进行预处理 – 光线校正、图像缩放、平面旋转等,而标量单元则处理决策(即如何处理CNN检测结果)。

图像分辨率、帧率、图层数和预期精确度都要考虑所需的并行乘累加数量和性能要求。Synopsys带有CNN的EV6x嵌入式视觉处理器可采用28nm工艺技术以800MHz的速率运行,同时提供高达880 MAC的性能。

一旦CNN经过配置和训练而具备检测情感的能力,它就可以更轻松地进行重新配置,进而处理面部分析任务,例如确定年龄范围、识别性别或种族,并且识别发型或是否戴眼镜。

总结
嵌入式视觉处理器上运行的CNN开辟了视觉处理的新领域。很快,我们周围能够解析情感的电子设备将很常见,例如检测开心情绪的玩具,以及能够通过识别面部表情而确定学生理解情况的电子教师。深度学习、嵌入式视觉处理和高性能CNN的结合将很快将这一愿景变为现实。


关键字:深度学习  计算机视觉  面部表情

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/article_2017081210954.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:一种多功能存储器芯片测试系统的设计与实现
下一篇:美媒:面部识别正在中国普及,这家创业企业火了

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

基于深度学习方法 如何对无人机航拍图像进行目标检测

本文全面概述了基于深度学习的对无人机航拍图像进行物体检测的方法。我们还介绍了一个应用示例:利用无人机监测一个非洲住房项目的建设进度。第一部分:我们刚发布了Nano Drone APIs!您是否知道无人机及其相关功能将在2023年成为一项价值500亿美元的产业? 截至今天,无人机被用于农业,建筑,公共安全和安全等领域,同时也被其他领域迅速采用。随着基于深度学习的计算机视觉为这些无人机“提供动力”,行业专家们预测无人机将在以前难以想象的应用场景中被前所未有地广泛使用。我们将探索一些应用以及伴随着它们的挑战,这些应用基于深度学习完成了基于无人机的自动化监测。在最后,我们将展示一个使用Nanonets机器学习框架对非洲住房项目进行远程监测
发表于 2018-12-03
基于深度学习方法 如何对无人机航拍图像进行目标检测

iSee研发深度学习及常识引擎 提升导航服务品质

据外媒报道,iSee公司正在打造新的自动驾驶汽车类型,该类车辆可利用“常识(common sense)”引擎,在非受控区域内为车辆提供导航服务。尽管大多数公司都将自动驾驶技术的研发方向定在提升传感器、感知及控制的性能上,但iSee的首席执行官Yibiao Zhao表示,他的公司率先致力于创建一款可真正了解交通状况的自动驾驶车辆。Zhao表示:“看见并不等同于理解。当前的车辆确实拥有了‘视觉’能力,但该类车辆并不了解接下来会发生什么状况,也不清楚其他人的想法,更遑论了解其他人的意图。”iSee在研发一款汽车编程系统,可利用特殊算法,实现开放环境下自动驾驶车辆与人员的协作,该系统分为两个部件:深度学习及常识引擎。Waymo及优步等公司
发表于 2018-11-08
iSee研发深度学习及常识引擎 提升导航服务品质

星宸科技部署 CEVA计算机视觉和深度学习平台

CEVA-XM6和CEVA深度神经网络 (CDNN)软件框架使高性能计算机视觉和人工智能技术在设备端成为可能。星宸科技SAV538智能相机SoC芯片中采用了CEVACEVA-XM6和CEVA深度神经网络 (CDNN)软件框架,该芯片瞄准监控、汽车和虚拟现实等应用市场         CEVA,全球领先的智能和互联设备的信号处理平台和人工智能处理器IP授权许可厂商 (纳斯达克股票交易所代码:CEVA)宣布晨星半导体(Mstar)的全资子公司星宸科技(SigmaStar Technology Corp.)已经获得CEVA-XM6计算机视觉
发表于 2018-10-31

加快深度学习速度,MathWorks 将提供全新GPU 加速容器

MathWorks 今天宣布为 DGX 系统和其他支持 NGC 平台,基于 NVIDIA GPU Cloud (NGC) 容器注册表提供新的 GPU 加速容器。研发人员现在可以利用 NVIDIA DGX 系统中或受支持云服务提供商的多个 GPU ,或选择 PC 和工作站上的 NVIDIA GPU,应用 MATLAB 中的深度学习工作流程。 构建 AI 解决方案的研发人员需要访问云和 HPC 资源,最大限度地缩短训练时间。利用来自 NGC 的 GPU 来加速 MATLAB 容器,用户能够大大加快深度学习网络训练速度,并借助 MATLAB 应用程序和工具来创建、修改、可视化和分析深度学习网络。 “NGC 提供对针对
发表于 2018-10-30

从原理、特点到应用,深度解析何为超深度学习

2016年随着AlphaGo战胜全人类棋手,使世界为之震惊,历史上从来没有过,对于一个技术投入了世界上如此巨大的资源。国际大的IT公司利用这个契机,为了各自利益和取得世界人工智能的发展主导权,极力宣传“深度学习模型”,把“深度学习模型”神化,同时又抛出了各种类型的“深度学习模型”的开源程序,以及大型GPU服务器。在这种势力的推动下,我国年轻的人工智能研究者只能在开源程序下研究,不了解“深度学习模型”的所以然,思想被限制。其实,“深度学习模型”,存在着训练不可能得到最佳解,作为补救措施的SGD也只能得到局部最佳解。因此“深度学习模型”不可解决黑箱问题,自然不可用于工业控制等场所。再加上属于大模型解决小任务,投入产出不对称等等原因
发表于 2018-10-25

谷歌 AI +医疗,实现缩短一半的诊断时间意味着什么

),题为“深度学习辅助对转移性乳腺癌淋巴结组织病理学检查的影响”。其中所使用的 AI 算法被称为“LYmph Node Assistant”(下文简称“LYNA”),它可以简单看做是帮助病理学家进行诊断的一种“拼写检查”。 不过,LYNA 在独立运作的情况下实力又如何呢?根据另一项发布在《病理学和检验医学档案期刊》(Archives of Pathology and Laboratory Medicine)的论文“基于人工智能的乳腺癌淋巴结转移检测:对病理学家黑匣子的检测”,在两个用以测试数据集中,LYNA 能够以 99% 的正确率区分出有转移性癌症的载玻片和无转移性癌症的载玻片。 值得业内人士参考
发表于 2018-10-21
谷歌 AI +医疗,实现缩短一半的诊断时间意味着什么

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">