人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

2017-06-08 19:53:02编辑:鲁迪 关键字:人工智能  谷歌  英特尔  英伟达

 2001年6月26日,著名导演史蒂文·斯皮尔伯格执导的《人工智能》(英文名:《AI》)在美国上映。影片讲述的是机器人小男孩大卫为了寻找养母,并缩短机器人与人类的差距而奋斗的故事。

《人工智能》电影剧照

大卫是一个被输入情感程序的机器人男孩,Cybertronics Manufacturing公司员工亨瑞和他妻子制造出的一个试验品。他们收养了大卫,并给了他足够的爱,但是人类与机器都无法接受大卫。于是大卫踏上旅程去寻找真正属于自己的地方,渴望成为一个真正意义上的人。

在这部影片上映15年后,机器人还没有成为真正意义上的人, 但人工智能在围棋领域战胜了人类。它的强大和超强的进化能力,让人类棋手难以望其项背。

AlphaGo以3:0战胜柯洁九段

“AlphaGo Master比AlphaGo Lee(与李世石对战的版本)要强大,Master在对战中耗费的能力(性能和功耗)仅是Lee版本的十分之一,需要4个TPU在单台电脑上运行即可。“DeepMind首席科学家David Silver在AlphaGo 战胜李世石后这样解释说。

AlphaGo强大到令人绝望,引发了“人工智能威胁人类”的讨论。但在本质上,人工智能是算法、数据和硬件三个要素综合的结果。

一旦涉及到算法、数据,就离不开计算。在这个领域,用来计算的硬件主要是TPU、GPU和CPU,他们背后代表的公司则分别是谷歌英伟达英特尔。这几家公司彼此竞争,又互相需要。

TPU(Tensor Processing Unit)是专为机器学习而定制的芯片,经过了专门深度机器学习方面的训练。谷歌工程师Norm Jouppi介绍,在人工智能相关的算法上,它的计算速度更快,计算结果更精准,同时也更加节能。

谷歌在I/O 2017上发布第二代Cloud TPU

人工智能依赖于机器学习(Machine Learning),机器学习又依赖于硬件,它需要硬件平台提供大量的运算资源。就计算效率来说,专用工具的计算效率远高于通用工具。专门为机器学习定制而出现的谷歌的TPU就是一种专用的工具,业内普遍认为它的出现对于通用工具GPU来说是一种威胁。

GPU的设计初衷不是主要用来进行神经网络运算,而是图像处理。由于其特殊的构造碰巧也比较适用于神经网络运算,所以在TPU出现之前,大多数做机器学习厂商都在同时利用FPGA和GPU来改进训练自己的神经网络算法。

英伟达创始人兼CEO黄仁勋却不认同“TPU威胁论”,在接受凤凰科技的采访时,他表示谷歌的TPU不会对英伟达的Volta GPU构成威胁,双方在TensorFlow项目上保持着合作,而Volta GPU的运算能力甚至在TPU之上。

作为世界最大的GPU制造商之一,英伟达一直不遗余力地推广GPU在深度学习领域的应用。老黄将英伟达称为“一家人工智能公司”。

谈到英伟达基于GPU的人工智能战略,需要先从Volta说起。

在今年5月11日的NVIDIA GTC 2017上,英伟达推出了全新的GPU架构Volta。英伟达应用深度学习研究副总裁Bryan Catanzaro表示这并不是前代架构Pascal的升级,而是一个全新的架构。Volta提供大量的FLOP(浮点运算),基于Volta的架构,人们就可以使用需要更多FLOP的深度学习模型。如今很多流行的模型都需要很大的计算资源,例如卷积学习神经网络。

黄仁勋展示基于Volta架构的Tesla V100加速芯片

基于全新的Volta架构,英伟达推出Tesla V100加速器,它速度比其前身Tesla P100快2.4倍。

Tesla V100凝聚了英伟达内部数千名工程师数年的开发,研发投入相当于30亿美金。黄仁勋在NVIDIA GTC 2017的主题演讲中,展示了一块Tesla V100,他笑称全世界唯一一块就在他手上,如果有人想买的话,那么价格就是30亿美金。

而在Tesla V100加速器基础上,英伟达推出了超级计算机DGX-1V和HGX。

DGX-1V内置了8块Tesla V100,黄仁勋表示“DGX-1V相当于400个服务器”,过去Titan X(GTX TITAN X,泰坦显卡)需要花费8天训练的神经网络,DGX-1V只需要8个小时,性能提升了24倍。

HGX是英伟达和微软联合开发的云图形加速器,是英伟达人工智能战略的硬件支撑。它同样内置了8块Tesla V100。目前微软的Project Olympus计划、Facebook的Big Basin系统都是使用的HGX作为数据中心设计方案的核心。

黄仁勋在台北国际电脑展的主题演讲中表示,GPU的运算能力提升非常快,能在未来取代CPU成为最主要的人工智能芯片。

但是英特尔并不这么认为。台北国际电脑展期间,英特尔数据中心全球销售部产品和技术总经理陈葆立在接受凤凰科技采访时提到, TPU和GPU只是加速芯片,目前是无法独立工作的,没有CPU它跑不起来。

“不管是AMD或者是ARM出的CPU,都是不能直接连接到英伟达的GPU的,连接的标准是PCIE(这属于英特尔),传输速度取决于PCIE的速度。但是目前我们自己的芯片组合可以跳过PCIE,所以能比CPU+GPU更快。”他说。

在收购Nervana之后,英特尔拥有了将至强融核处理器和FPGA两个不同的芯片整合成一个芯片的能力。在最新的Nervana系统中,就包含了FPGA加速芯片Arria 10和至强融核处理器的整合。

Arria 10就是一款主流的Altera FPGA产品

FPGA最初是从专用集成电路发展起来的半定制化的可编程电路,它可以作为一种用以实现特殊任务的可再编程芯片应用与机器学习中。

譬如百度的机器学习硬件系统就是用FPGA打造了AI专有芯片,制成FPGA版百度大脑。FPGA比相同性能水平的硬件系统消耗能率更低,在刀片式服务器上可以由主板上的PCI Express总线供电。使用FPGA可以将一个计算得到的结果直接反馈到下一个,不需要临时保存在主存储器,所以存储带宽要求也在相应降低。

英特尔的方案是将CPU与FPGA融合起来,组合芯片的运算更加灵活和高效,同时还能实现最低的功耗,获得性能和功耗的平衡。

人工智能方兴未艾,谷歌的TPU、英伟达的GPU和英特尔的CPU组合方案,在硬件层面上都还只是尝试,这种尝试能帮助实现早期的技术积累。在采访的最后陈葆立提到,虽然是不同的硬件平台,但是大家都在想办法融合,这有利于帮助开发者,从而真正帮助人工智能向前发展。


关键字:人工智能  谷歌  英特尔  英伟达

来源: 安卓资讯 引用地址:http://www.eeworld.com.cn/afdz/article_2017060810723.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:直接冲击重点本科 人工智能首次参加高考
下一篇:人工智能实现产业化 2017年有望成为智能安防爆发之年

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

AI赋能制造业 详解联想系人工智能领域投资策略

在人工智能项目国际交流研讨会上,联想控股旗下的两大投资机构——联想之星和君联资本分别分享了其在人工智能领域的投资策略。两家机构均植根于联想30余年来的创业经验和资源积累,区别在于联想之星是联想控股的早期投资和孵化板块,君联资本则重点投资于初创期和扩展期企业,同时兼顾种子期的项目。联想之星王明耀:从自发投资走向自觉投资截至2018年7月13号,联想之星刚好走过了整整十年。十年间,其投资重点专注于TMT、人工智能和医疗健康三大领域。在人工智能领域,联想之星的布局开始于2010年。从2010年到2012年期间,它投资了专注于虹膜识别的中科虹霸、人脸识别公司Face++等公司。这个阶段被联想之星总经理、主管合伙人王明耀称为“自发投资阶段
发表于 2018-07-23 19:01:40

定义智能家居新标准,人工智能与场景也该进来了

两种表述的语意,定义中描述的,以及我们通常所指的都是智能家居这一住宅环境,既包括单个住宅中的智能家居,也包括在房地产小区中实施的基于智能小区平台的智能家居项目,如深圳红树西岸智能家居。第二种语意是指智能家居系统产品,是由智能家居厂商生产、满足智能家居集成所需的主要功能的产品,这类产品应通过集成安装方式完成,因此完整的智能家居系统产品应是包括了硬件产品、软件产品、集成与安装服务、售后在内的一个完整服务过程。  9年多过去了,由于物联网、移动互联网、云计算、人工智能技术的快速发展,已经或正在极大地改变智能家居产业,因此,智能家居的定义需要进行适当修订,千家智客创始人向忠宏为此专门召集智能家居业界专家,包括中国室内装饰
发表于 2018-07-22 11:20:15
定义智能家居新标准,人工智能与场景也该进来了

人工智能会替代多少人力劳动?

一双眼睛的局部细节图出现在电脑屏幕上,小慧对着放大的眼睛,一步步地做好标记点。 一眼望过去,一排排的电脑屏幕上,都是类似的画面。也许是因为窗帘的遮光效果太好,略显昏暗的办公环境加上电脑屏幕上被放大的各种物体细节,颇为惊悚。 在某人工智能研究院看到这一幕,不觉惊叹即使是头部的AI创业公司,最关键的一环依然是从数据标注员开始的。 而这是一群被称作第一批被AI累死的人。 AI的老师:画框的这些人伴随着AI兴起的最关键的技术莫过于深度学习,作为深度学习的基础,神经网络是一种以输入为导向的算法,其结果的准确性取决于接近“无穷”量级的数据。 所以摒除那些复杂的中间环节,深度学习最关键的就是需要
发表于 2018-07-20 19:27:04

机器人进入安防市场,底气何在?

从1920年捷克作家雷尔·恰佩克的科幻小说《罗萨姆的机器人万能公司》中的"robot"一词开始,机器人就从单纯的文字变成了现实。 在现实生活中,以服务机器人为代表的机器人穿梭在人类世界的各个角落里,逐渐成为人类生活中不可缺少的部分。但也正因为诞生于科幻小说之中,人们对机器人一直充满着幻想,从工业机器人到扫地机器人,再到教育机器人和快递机器人,人类的双手正在扶持一个新行业的诞生——安防机器人。 从安防机器人谈起安防机器人又称安保机器人,是机器人行业的一个细分领域之一。 和其它服务机器人类似,安防机器人内置摄像头,GPS技术,机器视觉和语音交互等人工智能技术。但光从称呼出发,我们就能了解安防机器人
发表于 2018-07-20 19:25:44

AI不稳定,就业有风险,所以要招本科生?

上个礼拜,北京航空航天大学主办了国内首届人工智能本科专业研讨会。会上清华大学、南京大学、西安交通大学等国内26所大学共同发布了《关于设置人工智能专业建议书》,呼吁尽快设置本科人工智能专业。 毫无疑问,这个高考季当中,人工智能已经成为了一个热门话题。伴随着知名高校的呼吁,我们还可以看到各个名牌大学的人工智能学院、人工智能研究院如雨后春笋一样成长起来。中国科学院、南京大学、清华大学,都已经在一年内成立了类似研究机构。 而政策层面,国家《新一代人工智能发展规划》中也明确提出要建设人工智能学科。人工智能要发展,需要人才和学术建设应该是毫无争议的问题。  但关于人工智能是不是要在今天就成为本科专业
发表于 2018-07-20 19:22:43
AI不稳定,就业有风险,所以要招本科生?

人工智能会导致经济危机?

理论上来说,人工智能的普及,会带给整个人类社会极大的冲击,包括但不限于会有大量人失业,并由此引发经济危机。 伴随着人类社会的不断发展,人类社会面临的挑战从怎样克服物资不足,正逐渐转变成如何合理分配我们生产出来丰富物资。如果人类可以处理好这个问题,那么人类就有可能进入共产主义社会,整个社会按需分配,人们不再需要争夺资源,因为资源过剩。但是,如果人工智能被别有用心的人利用,整个人类社会陷入一场浩劫,一场巨大的动荡也不是不可能。 但是不管人类最后怎么处理人工智能带来的生产力飞跃,现有的经济运行模式一定会出问题。在人工智能普及的过程中,或者初步完成普及之后必然会出现一个极其容易出现经济危机的阶段——生产过剩/产能过剩
发表于 2018-07-20 19:22:09

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved