AI算法日新月异 FPGA灵活特性优势显著

2017-04-07 22:03:31来源: EEWORLD 关键字:AI  人工智能  FPGA

人工智能(AI)算法日新月异,对嵌入式处理器的灵活性带来许多考验,也让以灵活弹性著称的现场可编程门阵列(FPGA)组件有很大的发挥空间。

赛灵思ISM营销资深技术经理罗霖表示,由于人工智能目前还处于发展阶段,算法日新月异,目前还没有一个算法可以固定下来,这为ASIC的设计带来很大挑战,因客户往往需要的是十分灵活的架构。

有鉴于此,赛灵思推出reVISION堆栈技术,其具备了可重组以及所有形式链接的特性,让开发者能充分运用堆栈技术,快速研发与部署升级方案,这样的特性对于开发未来需求的智能视觉系统是至关重要的的。 不仅如此,该技术也使开发者在结合机器学习、计算机视觉、传感器融合与连接的应用时,能够获得显著优势

举例而言,相较于其他嵌入式GPU与传统SoC,reVISION将机器学习推论的每秒每瓦影像效能,提升了6倍、计算机视觉每秒每瓦每帧处理速度提升了42倍,而延迟却只有五分之一。

罗霖分析,相较于同等级GPU技术,FPGA在低延迟(Low Latency)的部分,本身就与传统的架构不同,传统架构是将收集到的数据送到DDR内存中进行缓存,处理器要再从DDR中取出数据进行运算,运算完成后再送回DDR。 但FPGA则是采用像素流(Stream)的方式,直接可以到模拟进行运算,运算完成后,输出结果即可,由于省去了存取DDR的时间,因此可以延迟可以降到非常低。

从算法的层面来看,人工智能含有许多智能决策的部分,因此需要有很强的平行运算能力。 这些算法进而对处理器结构产生了不同的需求,像是在神经网络中,卷积运算强调的是平行运算,适合在FPGA上运行,但在传感器融合的部分,则比较适合在CPU上运行,因其必须将硬件进行分割,再将不同的算法,放到处理器中。

罗霖指出,在脱机的神经网络训练部分,GPU的确是比较有优势的,由于其要求的浮点运算性能特别高,因此不少深度学习都是采用GPU,而赛灵思的立场是不会以FPGA去进攻这块市场,不过若是以在线的任务来看,FPGA还是很有优势的。 目前边缘运算对嵌入式处理器的要求除了传感器的接口要够多,组件的I/O型态也十分多变,可能是高速率、中速率或低速率,这些处理器都要能支持,且在线处理的能力也相当关键。

关键字:AI  人工智能  FPGA

编辑:王磊 引用地址:http://www.eeworld.com.cn/afdz/article_2017040710444.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:最新AI算法能将一幅画变成真实图片
下一篇:Intel:将GPU用于深度学习仅只是人工智能技术的一部分

论坛活动 E手掌握
关注eeworld公众号
快捷获取更多信息
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
AI
人工智能
FPGA

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved