datasheet

大数据技术将在智能制造中起什么作用?

2016-04-12来源: 199IT 关键字:大数据技术  智能制造
    实现工业4.0或中国制造2025的前提之一是构建智能工厂,其核心要素包括了信息物理系统(CPS),物联网(IOT),智能认知,社交媒体,云计算与移动,以及M2M。 智能工厂构成了工业4.0的一个关键特征。智能工厂将从现在通过中央控制中?的模式转向通过自行优化和控制其制造流程来实现。

  柔性生产的三个方面:

  1.人、机器和资源如同在一个社交网络里自然地相互沟通协作。

  2.生产出来的智能产品能够理解自?己被制造的细节以及将如何用。它们积极协助生产过程,回答诸如“我是什么时候被制造的”“哪组参数应被用来处理我”“我应该被传送到哪”等等问题。

  3.机器和产品之间的数据传输将通过使用微处理器、存储装置、传感器和发送器来实现。这些装置将被嵌入至几乎所有可想象的机器、待加工产品、材料、智能工具和用于组织数据流的新型软件,由此实现产品和机器的相互通信并和交换数据。

  大数据在智能工业的特征:

  ——数据的处理方法比数据本身值钱

  无论是为促销产品还是作为战略目标的方式,大数据已然成为很多公司和机构过度使用的术语。2012年高德纳(Gartner)给出德大数据定义里面,特别强调大数据是多样化信息资产,不仅关注实际数据,而最最重要的是关注大数据处理方法。数据量大还是量小本身并不是判断大数据价值的核心指标,而数据的实时性(velocity)和多元性(variety)应该对大数据的定义和价值更具直接的影响。

  ——大数据是多结构化数据:包含人类和机器数据

  我们大多数人会认为大数据包含了非结构化数据与结构化数据。我更提倡大数据是“多结构化数据”的说法,无论是自由文本还是关系数据库等,大数据可以由人类产生的数据足迹与机器自动生产的数据两大板块形成。大数据的工具和技术能够为不同的结构化数据服务。在信息化与工业化融合的过程与商业活动中,我们需要加强机器数据的采集,分析,并且把此项工作作为智能制造的核心工作之一。

  ——工业大数据的机器数据让我们的业务变得透明

  在现代工业供应链中,随着大数据应用的普及,我们可以感受到了从采购,生产,物流与销售市场都是大数据的战场。大数据可以帮助我们实现客户的分析和挖掘,它的应用场景包括了实时核心,交易,服务,后台服务等。通过的载体包括了手机,传感器,穿戴设备,3D打印机和平板电脑等。传感器数据属于工业大数据类别之一,从这些机器数据中,我们可以保障生产,满足法律法规的要求,提升环保,改善客户服务。通过帮我们找到已经发生的问题做好协助预测相类似问题未来重复发生的几率与时间。

  大数据的挑战:

  1.用理性了解大数据

  作为与工业4.0联系最为紧密的两化融合任务,中国制造2015其核心是生产过程、产品的智能化,以及互联网与制造业的融。数据的灵活处理性成为第一个焦点。随着传统数据库(database)和数据仓库(data warehouse)的运行越来越缓慢,并很难满足企业业务的发展需要,数据的灵活性就成为了推动大数据技术发展的一个重要推动力。

  2.从Hadoop走向数据湖

  2015年的大数据领域被看作是“数据湖(data lake)”与“数据藻泽”的状态之争。无论学术杰如何去诠释,其核心是强调一种基于对象的数据存储方式将收集来的数据以其最原生的格式(多结构化的)存储下来留作日后使用。“数据湖”具有很高的价值定位,它代表了一种可扩展的基础架构,非常经济且超级灵活。

  3.自主大数据数据服务成为主流

  随着大数据工具和服务的发展,2015年,IT行业将逐渐缓解发展瓶颈的局面,许多商业用户和数据科学家将会借助相关工具和服务访问大量数据。自助服务大数据将成为IT行业的一种趋势,它允许商业用户可以通过自助服务接触大数据。自助服务还可以帮助开发者、数据科学家和数据分析师直接进行数据探索和处理工作。当我们了解大数据的时候,业务的价值和IT的成本是我们主要衡量未来IT的标准,业务价值驱动大数据创新。Hadoop 不再成为我们讨论的大数据主题。我们需要了解更多的是业务创新,数据变现和业务场景的探索。

  下一代的大数据体系——数据湖:

  每个数据项都应有清楚的追踪,可追溯其源系统以及该数据项产生的时间等信息。2010年 JamesDixon以此理念,创造了数据湖(data Lake)这个术语,当时他打算将数据湖泊作为单一数据源来使用,而多数据源将形成“水景园”。尽管还是最初的构想,如今最普遍的应用是将数据湖泊当做许多数据源的结合。现有数据仓库在分析能力的缺失,业务对数据获取能力的提升,高级分析方法的创新是一种必然。

  数据湖泊是近十年出现的术语,用来描述数据世界中,数据分析管道的重要组成部分。作为一个信息系统,数据湖泊是大型的基于对象的存储库,数据以其原始格式存储。通过全面的监控和分析,通过数据的分析模型的建立,学习,模拟,行动,最终实现内容认知的智能。 有并行体系以及无需移动数据即可对数据进行计算操作的明显特点。

  特点 1 -数据湖泊是一个并行体系,能够存储大数据

  数据湖泊的每个数据元素都有独特的标识符,并有一组扩展的元数据标签。

  数据湖泊以数据源提供数据时的原格式(不论原格式是什么)存储原始数据。没有预设的数据模式,每个数据源都可以使用任何模式。由消费者根据自己的目的来理解数据。

  特点 2 -数据湖体系无需移动数据即可对数据进行计算操作

  总结:

  大数据技术自身在快速的发展,从1.0到大数据3.0的数据湖时代,我们要理性的看待大数据,在关注数据量的同时,应该更加重视数据分析的能力和方法。笔者认为,实用分析工具与先进分析理念,真正释放数字化分析的力量,由人类轨迹产生的数据,与机器自动产生的数据得出洞见,从管理决策推导运营方案,最终实现数据价值提升。

  业界有很多大数据的技术公司提供不同的技术,其中也包含了一大堆的开源软件开发出来的。大数据的成长路径一定是个长期成长过程。在不同的阶段,来打造不同的IT能力,我们倡导的是开放式大数据架构。不仅仅为大的数据集服务,同时企业中业务人员有很多小数据集的分析和探索。在很好满足业务的不同需求下,大数据一定是一种混搭技术,利用现有的IT投资来达到整个回报的最大化。特别在中国智能制造2025的变革中,数据湖不会是数据仓库和BI平台的终结者,但数据湖一定是未来企业数据技术(DT)的核心纽带,成为引导中国制造2025变革的数字宠儿。

  文丨张礼立,**智库学术委员,玖道科技首席战略官,上海市海外经济技术促进会理事。

关键字:大数据技术  智能制造

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/article_201604129479.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:加快实现智慧城市 大数据加上腾飞翅膀
下一篇:人机交互是未来智能家居的决胜关键

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

大数据技术将迎来爆发式增长

2017年是云计算、大数据、人工智能技术大爆发的一年,移动互联网利用人口红利带来的经济增长已经初见端倪,互联网正在进入智能时代,云计算、大数据、人工智能将推动社会迎来变革性的发展。技术发展是产业繁荣的前提。行业要想取得突破性创新,技术形态的成熟是一个必然要素,如果技术和硬件没有达到产业的要求,数据库和平台都是非完整和非稳定的,时代的产业基础也十分的薄弱,而这也需要产业政策的配合,以加快产业变革的进一步发展。大数据技术更加追求精准和多维度。除了大数据采集之外,更重要的是数据的处理、挖掘、分析和可视化这样一整套的过程。对于大数据应用来说,需要重点关注大数据的来源、处理手段及其商业化,在未来,对于精度要求更高、复杂性更高的大数据
发表于 2018-02-07
大数据技术将迎来爆发式增长

大数据技术是什么_大数据技术有哪些

来适应海量、高增长率和多样化的信息资产。毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。现实是,许多问题阻碍了大数据技术的发展和实际应用。因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。大数据技术涵盖哪些内容?1、流处理伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理
发表于 2017-11-19

大数据技术架构详解

大多数的技术突破来源于实际的产品需要,大数据最初诞生于谷歌的搜索引擎中。随着web2.0时代的发展,互联网上数据量呈献爆炸式的增长,为了满足信息搜索的需要,对大规模数据的存储提出了非常强劲的需要。基于成本的考虑,通过提升硬件来解决大批量数据的搜索越来越不切实际,于是谷歌提出了一种基于软件的可靠文件存储体系GFS,使用普通的PC机来并行支撑大规模的存储。存进去的数据是低价值的,只有对数据进行过加工才能满足实际的应用需要,于是谷歌又创造了MapReduce这一计算模型,该模型能够利用集群的力量将复杂的运算拆分到每一台普通PC上,计算完成后通过汇总得到最终的计算结果,这样就能够通过直接增加机器数量就获得更好的运算能力了。有了GFS
发表于 2017-11-19

大数据的大安全问题 大数据技术安全

之人的工具。冷酷无情的网络罪犯或是心怀愤懑的系统管理员也许会利用大数据来快速收敛不义之财。针对大数据安全的各个维度(以及各个维度中大量的数据分析成果、系统、服务等),建立有效的安全机制至关重要且充满挑战。   此外,由于与大数据环境相联系的广泛需求处于不断波动过程中,许多组织利用基于云技术的服务平台,以支持他们的大数据项目。但是对于这些在云端运行的大数据环境的组织,安全管理的任务变得更加困难。在云端,安全团队将可能面临供应商基础设施管理人员的威胁,曝光给云端其他组织的风险以及一系列附加风险。   传统加密途经的局限性   虽然现在有很多加密产品,但是大数据加密所面临的真正的挑战在于大多数加密产品只能解决某一具体方面的问题
发表于 2016-06-29
大数据的大安全问题 大数据技术安全

视频云时代挑战下云计算、大数据技术及其应用

    近年来,云计算、云存储、大数据等技术在互联网行业得到了高速发展,技术、产品都得到了较好的市场检验,已被全社会广泛认可。在安防行业,在市场客观需求引领下,主流厂商积极将相关技术引入到行业内,并结合行业特征进行演进,推动云计算、云存储、大数据在行业内的高速发展,同时推出一系列广受市场认可的产品与理念,而云计算、云存储产品也成为各主流厂商主在有关平安城市解决方案中的核心系统之一,这其中所应用的核心技术就成为了衡量所属公司行业地位的关键指标。   文/周明伟   现任浙江大华技术股份有限公司高级系统架构师   视频监控技术趋势一:系统集成下的产品融合   顺应业务发展需求,视频监控行业产品
发表于 2016-06-27
视频云时代挑战下云计算、大数据技术及其应用

东芝开发高速对照大数据技术 比传统处理技术快50倍

近日,东芝开发出了可高速对照大数据、大规模媒体数据注1的数据处理技术。此技术以高维矢量注2表现人物的面部、销售数据等,通过预先将类似的矢量群索引化处理,可实现高速对照。利用此技术从1000万张人物的面部图像数据中提取指定人物的实验注3中,仅8.31毫秒(1毫秒=1/1000秒)即可完成处理。比传统的处理速度高出约50倍注4。   近年来,大数据的分析、活用技术不断用于机械学习或机器故障预测等领域,大幅提高了故障的预测精度,给人们的生活带来诸多便利的同时,分析的数据量也比人们预想的更快实现了大容量化、大规模化,寻求计算处理的高速化需求日益凸显。   东芝开发的高速对照技术,结合了“矢量符号技术
发表于 2016-06-14

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved