datasheet

摩尔定律已死 半导体行业发展会停滞吗?

2016-02-16来源: 互联网 关键字:摩尔定律  半导体
计算设备体积随着半导体工业发展呈指数式缩小

  50年来芯片晶体管和工作频率的指数式增长(注:纵坐标为对数坐标)

  然而到00年代,很明显单纯依靠缩小尺寸的做法正走到尾声。不过,通过其他一些技术,芯片的发展仍然符合摩尔定律的预测。在90纳米时代,应变硅技术问世。在45纳米时代,一种能提高晶体管电容的新材料推出。在22纳米时代,三栅极晶体管使芯片性能变得更强大。

  不过,这些新技术也已走到末路。用于芯片制造的光刻技术正面临压力。目前,14纳米芯片在制造时使用的是193纳米波长光。光的波长较长导致制造工艺更复杂,成本更高。波长13.5纳米的远紫外光被认为是未来的希望,但适用于芯片制造的远紫外光技术目前仍需要攻克工程难题。

  即使远紫外光技术得到应用,目前也不清楚,芯片集成度能有多大的提高。如果缩小至2纳米,那么单个晶体管将只有10个原子大小,而如此小的晶体管可靠性很可能存在问题。即使这些问题得到解决,功耗也将继续造成困扰。随着晶体管的连接越来越紧密,芯片功耗将越来越大。

  应变硅和三栅极晶体管等新技术历经了10多年的研究才得到商用。远紫外光技术被探讨的时间更长。而成本因素也需要考虑。相应于摩尔定律,我们还有一个洛克定律。根据后一定律,芯片制造工厂的成本每4年就会翻番。新技术的发展可能将带来更高的芯片集成度,但制造这种芯片的工厂将有着高昂的造价。

  近期,我们已经看到这些因素给芯片公司造成了现实问题。英特尔原计划于2016年在Cannonlake处理器中改用10纳米工艺,这小于当前Skylake芯片采用的14纳米工艺。去年7月,英特尔调整了计划。根据新计划,英特尔将推出另一代处理器Kaby Lake,并沿用此前的14纳米工艺。Cannonlake和10纳米工艺仍在计划之中,但被推迟至2017年下半年发布。

  与此同时,新增的晶体管变得越来越难用。80至90年代,新增晶体管带来的价值显而易见。奔腾处理器的速度远高于486处理器,而奔腾2代又远好于奔腾1代。只要处理器升级,计算机性能就会有明显的提升。然而在进入00年代之后,这样的性能提升逐渐变得困难。受发热因素影响,时钟频率无法继续提高,而单个处理器核心的性能只能实现增量式增长。因此,我们看到处理器正集成更多核心。从理论上来说,这提升了处理器的整体性能,但这种性能提升很难被软件所利用。

  半导体行业的新路线图

  这一系列困难表明,由摩尔定律驱动的半导体行业发展路线图即将终结。但摩尔定律日薄西山并不意味着半导体行业进步的终结。

  爱荷华州大学的计算机科学家丹尼尔-里德(Daniel Reed)打了个比方:“想一想飞机行业发生了什么,一架波音787并不比上世纪50年代的707快多少,但是它们仍然是非常不同的两种飞机。”比如全电子控制和碳纤维机身。“创新绝对会继续下去,但会更细致和复杂。”

  2014年,国际半导体技术路线图组织决定,下一份路线图将不再依照摩尔定律。《自然》杂志刊文称,将于下月发布的下一份路线图将采用完全不同的方法。

  新的路线图不再专注于芯片内部技术,而新方法被称作“比摩尔更多”。例如,智能手机和物联网的发展意味着,多样化的传感器和低功耗处理器的重要性将大幅提升。用于这些设备的高集成度芯片不仅需要逻辑处理和缓存模块,还需要内存和电源管理模块,用于GPS、移动网络和WiFi网络的模拟器件,甚至陀螺仪和加速计等MEMS器件。

  以往,这些不同类型的器件需要用到不同的制造工艺,以满足不同需求。而新路线图将提出,如何将这些器件集成在一起。整合不同制造工艺、处理不同原材料需要新的处理和支持技术。如果芯片厂商希望为这些新市场开发芯片,那么解决这些问题比提高芯片集成度更重要。

  此外,新的路线图还将关注新技术,而不仅是当前的硅CMOS工艺。英特尔已宣布,在达到7纳米工艺之后,将不再使用硅材料。锑化铟和铟镓砷化合物都有着不错的前景。与硅相比,这些材料能带来更快的开关速度,而功耗也较低。碳材料,无论是碳纳米管还是石墨烯,也在继续被业内研究。

  在许多备选材料中,二维材料“石墨烯”被看好。这种自旋电子材料通过翻转电子自旋来计算,而不是通过移动电子。这种“毫伏特”量级(操作电压比“伏特”量级的晶体管要低得多)的电子开关比硅材料开关的速度更快,而且发热量更小。不幸的是这种电子材料还未走出实验室。

石墨烯的扫描探针显微镜图像

  尽管优先级下降,但缩小尺寸提高集成度的做法并未被彻底抛弃。在三栅极晶体管的基础上,到2020年左右,“栅极全包围”晶体管和纳米线将成为现实。而到20年代中期,我们可能将看到一体化3D芯片的出现,即在一整块硅片上制作多层器件。

  斯坦福大学的电气工程师Subhasish Mitra和他的同事已经开发出用碳纳米管将3D存储单元层连接起来的办法,这些碳纳米管承载着层间的电流。 该研究小组认为,这样的体系结构可以将能耗降低到小于标准芯片的千分之一。

IBM的3D存储芯片微观结构

  此外,另一种提高计算性能的方法是使用像“量子计算”这样的技术,该技术有望加速某些特定问题的计算速度,还有一种“神经计算”技术旨在是模拟大脑的神经元处理单元。 但是,这些替代性的技术可能需要很久才能走出实验室。 而许多研究者认为,量子计算机将为小众应用提供优势,而不是用来取代处理日常任务的数字计算。去年底,谷歌量子人工智能实验室已证明:他们的D-Wave量子计算机处理某些特定问题,比普通计算机快一亿倍。

D-Wave量子计算机

  通过新材料、不同的量子效应,甚至超导等不可思议的新技术,半导体行业或许能继续像以往一样提高芯片集成度。如果集成度能获得明显提升,那么市场对速度更快的处理器的需求可能将再次爆发。

  但目前看来,摩尔定律被打破将成为一种新常态。摩尔定律对半导体行业的指导意义正逐渐消失。(维金 边策)

关键字:摩尔定律  半导体

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/article_201602169293.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:嫌触摸屏太小?眼球控制智能手表问世
下一篇:寿命比地球还长的光盘技术诞生:存储容量360TB

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

摩尔定律放缓,eFPGA技术迎来了最好的发展时机

自摩尔定律被提出到现在,它已经伴随着半导体产业走过了半个多世纪,这个规律揭示了信息技术进步的神速,它让人们相信,IC制程技术是可以呈现直线式的发展,通过先进的工艺能让IC产品持续地降低成本,同时提升产品性能。但在今年,这样的想法或许被打破,业界对摩尔定律的怀疑声连绵不断,先是格芯宣布放弃7nm FinFET项目,随后英特尔延缓7nm工艺的研究进程等等,这些动作凸显了企业对行业新的看法。未来几年,摩尔定律是否会真的消失?它是否会改变如今的产业格局?这个不好说,但是放缓的节奏是不可否认的,摩尔定律的变化,给半导体产业带来了很多的不确定性,这也给eFPGA带来了发展机遇。(图片来源于Achronix公司)eFPGA迎来了发展良机对于业界
发表于 2018-12-01
摩尔定律放缓,eFPGA技术迎来了最好的发展时机

摩尔定律未终结,台积电将持续投入挺进3nm以服务更IC公司

集微网消息,中国集成电路设计业2018 年会暨珠海集成电路产业创新发展高峰论坛今日在珠海举行。会议上台积电副总经理陈平谈到了AI和5G的出现,将极大地促进新时代的产品创新,也给IC行业带来了更多的机会。一直以来,驱动整个半导体产业成长的引擎在不断地更替变化。从最早的大型计算机开始,到后来的个人电脑、移动电子设备,再到如今的普及运算,而AI和5G的出现更是将极大地促进新时代的产品创新。陈平指出,从2010年到2020年,预估数据通信量的复合年均增长率将超过50%。陈平表示,产品的创新离不开工艺技术的演进,无论是智能手机、高性能计算机、自动驾驶汽车和物联网产品,都需要各种各样且越来越先进的工艺技术加持。而提到半导体行业的工艺,谈及最多的
发表于 2018-11-29
摩尔定律未终结,台积电将持续投入挺进3nm以服务更IC公司

新技术不断问世,摩尔定律能否得到延续

半导体技术蓬勃发展,即将面临积体电路微缩化的三奈米制程极限,因此科学家除改善积体电路中电晶体的基本架构外,亦积极寻找具有优异物理特性且能微缩至原子尺度(<1 奈米)的电晶体材料。 台湾团队:单原子层厚度的二极管 台湾成大物理系吴忠霖教授与同步辐射研究中心陈家浩博士所组成的国内研究团队,在全球众多竞争团队中脱颖而出,成功地研发出仅有单原子层厚度(0.7奈米)且具优异的逻辑开关特性的二硒化钨(WSe2)二极管,并在「自然通讯Nature Communications」杂志上发表研究成果。 此二维单原子层二极管的诞生,更加轻薄,效率更高,除了可超越『摩尔定律』进行后硅时代电子元件的开发,以追求元件成本
发表于 2018-11-26

激烈的技术竞争,将促使摩尔定律继续前进

摩尔定律描述的现象,对现代世界产生的影响可以说超过其他任何现象。过去40年里,计算能力呈指数级提升,以各种方式改变了我们的生活,造就了从万维网、智能手机到物联网(Internet of Things)的各种各样的奇迹。但是,即便摩尔定律还没有失效,它的“效力”也在迅速消减。目前尚未得到回答的一个大问题是,这在多大程度上重要?在1965年的一篇文章中,未来的英特尔(Intel)创始人戈登•摩尔(Gordon Moore)解释了集成电路的元件数量每年翻一番的速度。1975年,他将这一周期修正为两年,他的预测(后来被认可为一项“定律”)从那时起基本上一直是成立的。指数级变化的影响往往很难理解。在实用意义上,计算性能的提高使得芯片变得更小
发表于 2018-11-19
激烈的技术竞争,将促使摩尔定律继续前进

如果摩尔定律不再适用,我们该如何前进

“摩尔定律已死”这样的说法我们已经听到很多,不管这么说是不是严谨,摩尔定律的延续非常非常困难是不争的事实。更重要的问题是,在这个背景下,我们该怎么做?这个问题已经有很多讨论,我也有自己的一些思考。正好今天看到黄老板在SC18讲演中的这幅图,正好可以把我的一些想法串起来,不妨和大家分享一下。 在朋友圈写了下面一段话,可以作为一个摘要:以前,在摩尔定理作用下,我们可以依赖半导体技术的发展“粗放经营”,很多优化的工作都停留在学术圈。现在失去了这个“红利”,我们必须“精耕细作”:找到合适的架构,合适的方法,合适的精度,进行全栈优化。而这些“细活”都需要更多的时间和精力,能否实现依赖于提高生产效率(productivity)的工具
发表于 2018-11-15
如果摩尔定律不再适用,我们该如何前进

后摩尔定律时代,硅光子、量子计算等技术或成为7nm之后的

        集微网消息,工研院今(13)日指出,全球半导体制造业版图正开始发生新一波变动,随著7nm制程将在近年逐步投入量产,7nm之后解决方案的讨论,开始浮上台面。        根据工研院IEKConsulting预测,2019年后beyond Moore’s law(后摩尔定律时代)的创新技术兴起,将成为半导体产业热烈探讨的重要课题,硅光子、量子电脑芯片更将是未来2020~2030年半导体技术演进的重要推手。        工研院指出,硅光子技术可整合现有CMOS制程,成为业界颇受瞩目的研究方向
发表于 2018-11-13

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">