一种抗SEU存储器电路的FPGA设计

2010-11-21 15:53:02来源: 国外电子元器件
O 引言

  随着我国航空航天事业的迅猛发展,卫星的应用越来越广泛。然而,太空环境复杂多变,其中存在着各种宇宙射线与高能带电粒子,它们对运行于其中的电子器件会产生各种辐射效应。辐射效应对电子器件的影响不可忽视,因为辐射会使器件的性能参数发生退化,以至失效,从而影响卫星的可靠运行,缩短卫星的使用寿命。辐射效应对电子器件的影响很多,其中最主要的有总剂量效应(TID)和单粒子效应(S-EE)。SEE按产生的影响主要包括单粒子翻转(SEU)、单粒子闩锁(SEL)和单粒子烧毁(SEB)等三种类型,其中以SEU最为常见。在各种辐射效应当中,存储器对SEU最为敏感,所以,对存储器的抗辐射设计首先要考虑的就是抗SEU设计。

  事实上,不同的空间环境和应用需求,对存储器的数量与质量也有不同的要求。例如:在上传指令与下载星载仪器仪表的状态时,要求数据有很高的可靠性,此时对内存容量则没有特别的要求;而在处理某些用途的图像数据时,对数据可靠性的要求则相应较低,此时则需要较大的内存容量。所以在采用具体的抗SEU方法时,也要因其不同情况而做出适合的选择。

  本文将采用扩展汉明码编码(Extended Hamming Code)与三模冗余(Triple Modular Redundancy,TMR)相结合的方法,并利用二者检错纠错的不同特点,来对SRAM进行检错纠错模式可调的抗SEU设计。这样既可实现存储器的抗SEU设计。又可满足对存储器使用灵活性的要求。

1 扩展汉明码与TMR检错纠错原理

  1.1 扩展汉明码检错纠错原理

  扩展汉明码是一种常用的能检测两位错同时能纠正一位错的编码方法。它是在汉明码的基础上.在码字上再加入一个对所有码元都进行校验的校验位而得到的,故称为扩展汉明码。

  扩展汉明码是线性分组码的一种,其信息位和监督位的关联可由一组线性代数方程组表示。(n,k)线性分组码的编码就是去建立由r(其中r=n-k)个生成冗余位的方程式构成的方程组,再由此方程组转化为kxn的生成矩阵G。编码时,可将信息位向量(k维)乘以生成矩阵G,从而得到码字向量(n维),如下式所示:

  将式(1)表示的方程组作移位变换,可以得到式(2),通常称H为监督矩阵。

  解码时,通过监督矩阵H与读出的码字向量C的乘积结果可判断该码字是否出错。若读出的码字向量C乘上监督矩阵H后得到一个零向量,则表示没有出错;否则表示码字在存储之后受到了单粒子效应的影响,有错误发生。通常将监督矩阵与读出的码字向量C的乘积记作S,称为校验子。当码字中某一位发生错误时,就会得到唯一的S向量,该向量只与码字出错的位置有关,而与码字C无关。通过S向量可以定位出错的位置,并对出错数据进行改正。

作为线性分组码的一种,扩展汉明码的分组编码总长为2r位,信息位长度为2r-1-r位,即(2r,2r-l-r)扩展汉明码。本设计采用了16位RAM存储器,所以对应使用(22,16)扩展汉明码。

  1.2 TMR检错纠错原理

  TMR是一种常见的硬件冗余技术。它的原理是在相同的一组硬件单元上同时发生错误的概率要比在单一硬件单元上发生错误的概率小。它的基本方法是将所需容错的硬件单元增加到三倍或更多,并将各个单元的输出连接到一个表决器上,由表决器选择所有硬件单元中的绝大多数输出值作为整体的输出值。图1所示为三模冗余系统结构图。

  图1中,A1、A2、A3三个模块同时执行同样的操作,并将其输出送给表决器,然后由表决器对接收到的三路数据进行比较。如果三个模块同时给出三个相同的输出,则表决器输出任何一路作为正确输出。如果其中任一模块出错,其输出不同于其它两个模块,则表决器依然输出正确结果。如果有两个模块同时出错,且变成相同的状态,表决器则会误认为这是正确的结果并输出,不过这种情况的出现虽然可能,但概率非常小。当然,如果这两个模块同时出错,但出错状态不同,则表决器此时将无法做出选择,但可以产生中断。

2 内存配置方案

  通过上面对扩展汉明码与TMR两种检错纠错方式的介绍,可以发现其二者各有优势,分别适用于不同的环境条件和应用需求。但是,这两种方案对于内存配置的要求是不同的,所以在对整个电路的设计之前,首先要对内存作如下配置。

  本设计中使用了3片16bit的SRAM。并分别采用(22,16)汉明码和TMR两种检错纠错方法。对于(22,16),一般采用(16+8)位的存储器来实现,而TMR,则采用16位的存储器来实现。若要支持这两种方法,则必须首先为存储器设计一种特别的内存配置方式。本设计采用如图2所示的内存配置方案。

  对于图2所示的内存配置方案,当系统工作在TMR模式时,所有的片选信号都被相同的信号驱动,这样就构成了TMR需要的3个16位内存空间;而当系统工作在汉明码模式时,它们则ah、al、bh为一组,bl、ch、cl为另一组,并分别被相同的片选信号驱动,从而构成了两个独立的(16+8)位的内存空间。本设计采用了3片128 K×16bit的SRAM,如果设置每片SRAM的低4K×16bit空间工作在TMR模式,则从图中可以看出,该SRAM芯片组中还有两个124 K×(16+8) bit的空间可以工作于扩展汉明码模式。

3 电路设计

  基于上述内存配置方案,本文设计了如图3所示的抗SEU存储器电路。该电路包含了4个功能模块。

  3.1 TMR模块

  在TMR工作模式下可完成数据的写入操作和读取操作中的冗余判决。如果在读取过程中发现有一片RAM中的数据与其它三片不同,则对该片RAM进行正确数据的回写;如果发现三片RAM中的数据都不相同,则产生中断信号。

  3.2 扩展汉明码模块

  在扩展汉明码工作模式下,当写入数据时,则对其进行编码;当读取数据时,则对其进行相应的解码,并判断数据是否出错。如果一位错则自动回写正确值,如果两位以上的错误,则产生中断信号。

  3.3 模式选择模块

  在该模块内部设置有一个32位的模式配置寄存器。通过给模式配置寄存器的低18位进行预先置数,可以设置检错纠错电路的工作模式,同时也就设置了RAM的内存配置情况。根据CPU的不同应用要求,模式控制模块可以让检错纠错电路在扩展汉明码方式与TMR方式二者之间进行灵活的切换。

  3.4 控制逻辑模块

  该电路模块可根据电路所处的检错纠错模式来控制相应的读写信号和内存片选信号,以便正确访问RAM内容。

[1] [2]

关键字:SEU  存储器  FPGA

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/2010/1121/article_3239.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
SEU
存储器
FPGA

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved