一种视频增强的新方法

2010-10-23 08:47:33来源: 互联网 关键字:增强现实  仿射不变量  遮挡  视频增强

视频增强新方

视频透雾新方法  

  雾是悬浮在贴近地面的大气中的大量微细水滴(或冰晶)的可见集合体,使能见度降到1公里以下……

  是基于光学成像原理的视频监控系统的大敌。雾造成有效视频监控距离大大缩短,使图像变得模糊,严重的情况下图像一片雪白,使视频监控系统变得毫无用处。

  近年来随着全球气候变暖、城市化进程加速、人口密度增加,城市的大雾现象变得越发严重。城市大雾对城市的治安监控、交通监控、环境监控等视频环境造成极大的损害,严重时可能造成城市安防系统瘫痪……森林、大面积植被环境由于绿色植物的呼吸作用,清晨、黄昏容易造成覆盖大面积区域的雾气,这些雾气给森林的安全防范以及火灾防范造成了极大的危害,使通常的长焦距镜头摄像机系统失去原有的威力……海岸、港口、河道由于水汽蒸发原因,常年湿度较大,形成无法消除的大量水雾,常年的水雾密集使港湾的监控难以有效实施……多年以来,很多的光学、电子、软件专家致力于视频图像的雾气消除研究工作,然而事实证明单一解决手段无法从根本上解决这个问题。

  全新的透雾解决方案利用高集成度设计方法;通过在摄像机中放置专用的高精度光学转换器件、专用成像器件,配和最新技术研发的专用的视频增强设备,从光学、电子、软件多方面构成一个光、电一体化的专家级视频透雾监控解决方案。

下面是电子部分去雾的介绍:

一、 视频增强的背景 

  视觉信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的。随着多媒体技术飞速发展,视频图像得到广泛重视和应用,其应用领域遍及广播电视、医学、保安监控、车场管理、军事及生命科学等方面。视频采集技术与显示技术的提升,使得人们对画质的要求越来越高,但是在各类图像系统中图像的传送和转换(如成像、复制、扫描、传输以及显示等)总要在一定程度上造成图像质量的降低。例如一些户外监控系统往往只能在晴天下才能正常工作,在大雾、沙尘等恶劣天气或者低光照情况下图像对比度大大降低,人们无法从中得到有用信息。不仅如此,长期观看品质低下的视频可能会加重人们眼睛的负担,容易产生视觉疲劳,甚至会头晕目眩。在出现大雾、大雨、沙尘等恶劣天气时,户外景物图像的对比度和颜色都会被改变或退化,图像中蕴含的许多特征都被覆盖或模糊,得到的是退化图像,对于各类监控都造成了极大的困难,因此,要充分发挥监视视频的效能,就必须对监视视频图像进行增强处理。在军事侦察、监视方面,为了实施正确指挥,取得作战胜利,现代战争对军事侦察提出了更高的要求,广泛应用先进科学技术,进一步扩大侦察的范围,提高侦察的时效性和准确性。因此,军事侦察、监视中用到的视频图像的品质尤为重要,退化的视频图像对信息的识别与处理会造成偏差,而这种偏差的后果是非常严重的,因此视频增强技术应运而生。

二、 视频增强算法(Retinex算法)的基本原理 

  Retinex算法简介 

  Retinex(视网膜”Retina”和大脑皮层”Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种基于理论的图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex 理论是以色感一致性(颜色恒常性)为基础的。 

  不同于传统的图像增强算法,如线性、非线性变换、图像锐化等只能增强图像的某一类特征,如压缩图像的动态范围,或增强图像的边缘等,Retinex可以在动态范围压缩、边缘增强和颜色恒常三方面达到平衡,因此可以对各种不同类型的图像进行自适应性地增强。正因为Retinex诸多良好的特性,使Retinex算法在很多方面得到了广泛的应用。 

  在诸多以Retinex为核心的算法中,单尺度(Single-Scale Retinex, SSR) 算法,多尺度(Multi-Scale Retinex, MSR)算法是最具有代表性和最成熟的算法。 

  单尺度(Single-Scale Retinex, SSR)算法原理

  根据Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如下:

                               图1:Retinex原理示意图 

  对于观察图像S中的每个点(x,y),用公式可以表示为: 

  S(x,y)=R(x,y)﹒L(x,y) (1) 

  据Retinex 理论,物体的颜色是由物体对光线的反射能力决定的,而物体对光线的反射能力是物体本身固有的属性,与光源强度的绝对值没有依赖关系。因此通过计算各个像素间的相对明暗关系,可以对图像中的每个像素点做校正,从而确定该像素点的颜色。 

  单尺度(Single-Scale Retinex, SSR)算法在对数域中则表示为:
                (2) 

  根据上面(2)式的原理,Retinex理论进行图像增强的关键是从原图像中有效的信息计算出亮度图像L(x,y)。但是从原图像计算亮度图像在数学上是一个奇异问题,因此只能通过数学上近似估计的方式估算亮度图像。在Retinex算法的发展史中,曾经出现过平方反比的环绕形式、指数形式以及高斯指数形式,但在单尺度Retinex增强算法中,杰泊森(Jobson)论证了高斯卷积函数可以对源图像提供更局部的准确处理,因而可以更好地增强图像,其可以表示为:
                     (3) 
  其中λ是常量矩阵,c是滤波半径,并且满足: (4) 

  c越小,灰度动态范围压缩的越多,c越大,图像锐化的越厉害。因此亮度图像最终可以表示为:
                     (5) 
  单尺度(SSR)可以表示为:
           (6)

 

视频增透技术的现状及其在特殊环境上的应用

[1] [2]

关键字:增强现实  仿射不变量  遮挡  视频增强

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/afdz/2010/1023/article_3118.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:高速球技术全景剖析 智能网络夜视是方向
下一篇:视频服务器(DVS)的现状及发展趋势

论坛活动 E手掌握
关注eeworld公众号
快捷获取更多信息
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
增强现实
仿射不变量
遮挡
视频增强

小广播

独家专题更多

2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved