datasheet

纤巧型放大器可快速驱动重电容性负载

2008-06-03来源: EDNchina 关键字:电容性  反馈放大器  放大器电路  快速驱动  热特性  驱动能力  负载时  转换速率  R

  在电子电路中,寄生电容可谓无处不在。FET 栅极、布线、地和电源平面都会导致电容底线的增加。当高速电路中的电容性负载变得很重时,谨慎仔细的运算放大器选择对于优化转换速率、电流输出能力、功耗和反馈环路稳定性而言极为重要。

  苛刻的电路要求

  例如,假设由一个 100MHz、2VP-P 正弦波信号来驱动一个 350pF 的电容性负载。在这种情况下,所需的无失真最小转换速率为:

  SRMIN = 2πfVPK

  SRMIN = 2π (100MHz) (1V) ≈ 630 V

  转换速率设定了最大输出电流 —– 放大器正在给一个电容器充电,因此,最大输出电流将出现在最大转换速率条件下。

  I = C dV

  I = (350pF) 630 V ≈ 220mA

  最大功耗是一项重要的考虑因素。对于一个采用 ±5V 工作电源的运算放大器,假设电容性负载在 0V 条件下起动并以最大电流进行充电,则峰值功率为:

  P = IV

  P = (220mA) (5V) ≈ 1.1W

  当采用一个具有 135°C/W 热阻的封装时,这种非常连续的功率将导致芯片温度上升 148°C。如果环境温度为 85°C,则将使芯片温度达到足以熔化封装的 233°C!

  为了使 CLOAD 与放大器隔离,设计方案可以采用一个串联电阻器 RS。当电阻器或电容性负载变得非常大的时候,这种方法最终将限制带宽。由于该 RC 时间常数所造成的带宽缩减有可能对性能产生限制。当采用电流反馈放大器时,增大反馈电阻器 RF 是一种用于抑制峰化的替代补偿方法。

  纤巧型电流反馈放大器

  对于上述的高速、大电容性负载实例,400MHz 电流反馈放大器系列 LT1395/LT1396/LT1397 肯定可以满足转换速率要求。LT1395/LT1396/LT1397 能够迅速地处理大信号,并提供 80mA 的最小保证输出电流。不过,对于上例来说,该放大器系列达不到 220mA 的电流要求。在这种场合,虽然一个放大器或许不够,但 4 个肯定足够了。把这些放大器并联起来将能够满足电流要求,同时维持安全的功耗和稳定性。

  LT1397 四通道放大器专为在保持上佳热特性时推动大电流负载而设计。纤巧型 4mm x 3mm DFN 封装的铜质下腹部把热阻降至 43°C/W,就上面所举的例子来说,芯片温度将仅会上升至比环境温度高 47°C 的水平。

  元件的选择和测试

  无需组装完整的并联配置,可以构建一个单放大器测试电路,用于检查负载电容除以所采用放大器数目的结果 (CLOAD/4)。

  剩下的工作便是选择反馈电阻器 (RF) 和串联电阻器 (RS) 的合适阻值,以最大限度地增加 -3dB 带宽,并充分地实现频率响应中峰化值的最小化。不管是 RF 还是 RS ,较小的阻值都将导致带宽和峰化的增加。RF 具有一个约 255Ω 的实际下限。当负载电容增加时,RF 和/或 RS 的阻值必须增大,以维持稳定性。

  图 2 示出了采用图 1 所示的四放大器电路以及不同的 RF/RS 组合和 350pF 总负载电容时的测量结果。测量是在增益等于 1 的条件下进行,因此未采用 RG。

  

  图 1:采用全部 4 个放大器 (LT1397) 来驱动大电容性负载

  

  图 2:选择用于驱动 350pF 负载电容的合适 RF 和 RS (当并联 4 个 LT1397 放大器)

  四放大器电路拓扑结构相比于单放大器的效力优势可从图 3 看出。为了显示一个更具代表性的效果,我们把负载电容增至原来的 3 倍 (1000pF)。四放大器并联电路能够在不到 10ns 的时间里把 4V 电压转换至 1000pF 的负载电容中。这对应于一个 400mA 的转换输出电流。单放大器结构的电流限值约为 140mA,从而降低了至该大电容性负载的转换速率。对于单放大器配置,相同的 4V 转换需要 28ns 的时间,这几乎是四放大器配置的三倍。

  

  图 3:当驱动一个 1000pF 电容性负载时,四放大器 配置的速度高于单放大器配置。单放大器配置的响应 时间比四放大器配置慢了近三倍。

  结论

  应始终考虑采用在一个纤巧的功率增强型封装中的全部可用放大器,以提供快速转换重电容性负载所需的驱动能力。还应考虑使用电流反馈放大器 (例如:LT1397),以简化非常宽带宽电路的控制。

关键字:电容性  反馈放大器  放大器电路  快速驱动  热特性  驱动能力  负载时  转换速率  R

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/afdz/2008/0603/article_729.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:小功率VHF无线通信接收器MICRF004及其应用
下一篇:基于NXP UOCIII芯片的小尺寸液晶电视设计指导

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

更高的电容性能:保持密封

本文的作者是肖特研发专家Frank Kroll博士,在玻璃-金属密封方面拥有超过20年的设计经验。如今,铝电解电容器在我们的日常生活中越来越普遍。新型电容器正在逐步进入市场,如超级电容和双电层电容(EDLC),它们将用于电动车(包括电动汽车、混合动力汽车和电动公交车等),高功率应用和可再生能源应用,国防和航空航天部门,以及各种工业应用。不过,铝电解电容器有一个弱点:在整个使用周期中容易发生电解液流失。这通常是由不完美的端子密封导致的。少量水分会渗透到不完美的密封中,随着时间的推移,会在电容器内部积聚气体。电解液流失导致性能持续下降,需要使用超大电容器或两个电容器来弥补,但如果没有发生电解液流失,一个电容器就足够了。电解液缓慢而持续
发表于 2018-04-19
更高的电容性能:保持密封

世界首创玻璃铝密封元件提升电容性能

随着当今世界电子设备和系统的不断发展,铝电解电容因其重要的电存储功能越来越受到市场的亲睐。对电容技术及性能提高的要求正不断升高,电动车、大功率系统、可再生能源、国防和航空航太以及重工业等领域都依靠?电容来满足高电力需求。铝电解电容高效可靠,但其性能也常常受到电容的外壳设计和所用材料的限制。 例如,不完美的封装端子易发生湿气渗透,久而久之导致电解液干涸及性能下降。为了抵消这些性能损耗,通常会采用“过大”设计的电容或选择使用数个电容──?成本控制及空间管理角度考虑,这些都不是最理想的解决方案。电容的开创性发展所属国际科技技术集团德国肖特(SCHOTT AG)的电子封装事业部创新的解决方案可防止电容电解液干涸,实现持久可靠的高性能。凭藉
发表于 2017-12-13

世界首创玻璃-铝密封元件:肖特全新盖板技术提升电容性能

随着当今世界电子设备和系统的不断发展,铝电解电容因其重要的电存储功能越来越受到市场的亲睐。对电容技术及性能提高的要求正不断升高,电动车、大功率系统、可再生能源、国防和航空航天以及重工业等领域都依靠铝电容来满足高电力需求。铝电解电容高效可靠,但其性能也常常受到电容的外壳设计和所用材料的限制。例如,不完美的封装端子易发生湿气渗透,久而久之导致电解液干涸及性能下降。为了抵消这些性能损耗,通常会采用‘过大’设计的电容或选择使用数个电容 — 从成本控制及空间管理角度考虑,这些都不是最理想的解决方案。电容的开创性发展所属国际科技技术集团德国肖特(SCHOTT AG)的电子封装事业部创新的解决方案可防止电容电解液干涸,实现持久可靠
发表于 2017-11-30

基于电荷转移的电容性触摸捕获技术简介

      无论是移动电话和PDA等便携式消费电子产品,还是汽车、厨房电器、医疗设备以及工业和商业感测应用,基于直观式电容性触摸技术的解决方案都是这些领域的首选人机界面。稳健可靠的电容性触摸解决方案正在取代传统的电阻性滑块、机械按键和旋转控制装置。基于电荷转移的电容性触摸捕获技术基于“电荷转移”的电容性触摸捕获可采用下列两种方法来实现。第一种方案是将一个电容未知的感测电极充电至已知电势。该电极通常是PCB板上的一块铜区域。最终电荷会被转移到一个测量电路。在完成一个或多个“充电与转移”周期后对电荷进行测量,可以确定感测板的电容。把手指放在触摸表面会产生外部电容,因而影响接触点的电荷流。这就是一个触摸操作
发表于 2017-09-24

汽车电容感应的电子系统兼容性测试

屏蔽和导体机箱等方法减少辐射对被测系统的影响。传导发射测试在传导发射测试中,系统将噪声注入经常作为多种子系统总线共轨的电源线 (线束)。在大多数情况下,汽车的电子子系统不是线束上电气噪声的主要来源。假如它们产生明显的传导噪音,则可通过在电源接入点设计带有合适旁路电容器的系统改进结果。EMC兼容性标准方面的挑战由于在现代汽车中,电子子系统执行的是关键功能,因此兼容性标准已变得越来越严格。许多整车制造商都强制规定,即便是非关键电子子系统都必须通过EMC抗扰测试并且不得产生任何故障,包括上文中的级别5故障。此外,汽车EMC测试所涉及的方面越来越多,子系统的各项功能都需要在各种噪声频率下接受完整的测试。非关键特性,如子系统的用户响应时间
发表于 2017-03-18
汽车电容感应的电子系统兼容性测试

汽车电容感应的电子系统兼容性

等方法减少辐射对被测系统的影响。传导发射测试在传导发射测试中,系统将噪声注入经常作为多种子系统总线共轨的电源线 (线束)。在大多数情况下,汽车的电子子系统不是线束上电气噪声的主要来源。假如它们产生明显的传导噪音,则可通过在电源接入点设计带有合适旁路电容器的系统改进结果。EMC兼容性标准方面的挑战由于在现代汽车中,电子子系统执行的是关键功能,因此兼容性标准已变得越来越严格。许多整车制造商都强制规定,即便是非关键电子子系统都必须通过EMC抗扰测试并且不得产生任何故障,包括上文中的级别5故障。此外,汽车EMC测试所涉及的方面越来越多,子系统的各项功能都需要在各种噪声频率下接受完整的测试。非关键特性,如子系统的用户响应时间和低功耗模式等也需要
发表于 2017-03-17
汽车电容感应的电子系统兼容性

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">