步态加速度信号的无线采集系统设计

2008-06-02 17:19:44来源: EDNchina 关键字:无线收发芯片  步态识别  采集系统  报警电路  环形天线  低通滤波器  分区设计  温度

  步态,即人走路的姿势。作为一种生物特征,它具有不受距离影响、非侵犯性、难以伪装、受环境影响小等独特的优点,因而近年来备受关注。国内外的许多知名大学和研究机构,如美国麻省理工学院、中国科学院自动化研究所等,都广泛展开了步态识别研究工作。步态的独特性为人的身份识别和认证提供了有效线索,对医疗上的异步病态、偏瘫等疾病的预防、诊断和康复也可以起到很显著的辅助作用。而且,在现代化的体育训练中,也可以通过步态特征来监测运动员的体能消耗情况、动作准确程度等,制定科学的训练方案。此外,步态在机器人的行走、人的行为理解等科学研究上也占有举足轻重的地位。

  目前,国内外的步态研究都刚刚起步。各个步态研究领域都需要大量可靠的原始步态数据。现在公开的步态数据库主要有南安普敦大学的SOTON步态数据库、麻省理工学院的MIT步态数据库、卡内基梅隆大学的CMU步态数据库,以及中国科学院自动化研究所提供的NLPR步态数据库。以上数据库都是基于图像的。然而,动态环境中拍摄的图像受光照变化、运动目标的影子等多方面因素的影响,会给基于图像的步态特征提取带来较大困难。所以,Heikki Ailisto等人提出一种采用加速度传感器来获取步态数据的新方法,避免了动态环境中多方面因素对捕捉图像的不利影响,降低了数据处理的难度,开辟了步态数据获取的新途径;但此方法采用装备有DAQl200数据采集卡的笔记本电脑来采集数据,不仅成本高,而且不便于测试对象携带。

  步态加速度信号的提取方法成了步态研究的一个瓶颈;但是,随着各项技术的迅速发展,自动化、智能化的采集步态加速度信号成为了可能。

  本文提出了一种基于无线收发芯片CCl0l0的步态加速度信号无线采集的有效实现方法。该方法采用三轴加速度传感器MMA7260测量步态的加速度信号,并用Chipcon公司的内嵌805l的无线收发芯片CCl010作为核心控制器,控制其内置的模数转换器对加速度信号进行采样、A/D转换,然后在无线发射模块和接收模块间借助于路由实现了步态加速度信号可靠的无线传输。该采集系统由450 mAh的锂电池为其供电,可脱机使用。

  1 系统设计原理

  首先使用三轴加速度传感器来感测人行走时产生的三维加速度信号,然后由A/D转换器对模拟信号进行采样并转换为数字信号,送至微处理器作预处理。处理后的步态加速度数据通无线发射电路送至路由,再由路由转发给无线接收装置。最后步态加速度数据通过串口被送入计算机,可以供不同领域的步态研究者使用。图l为步态加速度信号无线采集系统的结构框图。步态加速度信号无线采集系统由发射装置、路由装置、接收装置和PC机4部分组成。发射装置由三轴加速度传感器电路、A/D转换电路、单片机和无线发射电路组成。路由装置由无线收发电路组成。接收装置由无线接收电路、单片机及串口电路组成。PC机部分主要由PC机及串口通信软什组成。

  

  2 硬件电路设计

  硬件电路主要包括CCl0l0与天线之间的RF收发电路、CCl0lO与加速度传感器的接口电路、按键控制电路、LED指示电路及报警电路

  硬件电路的核心部分是无线加速度传输模块。此模块既要满足发射与接收装置的功能要求,体积还要尽可能的小,以便于携带。这使得硬件电路的设计工作有很大的难度。如何做出高质量的PCB板成为整个设计的重点。PCB板设计主要包含原理图设计、布局设计和布线设计。

  2.1 系统原理图设计

  原理图的好坏直接影响布局、布线的难度,以及最后板子的性能。为了布局布线时能清晰地进行分区设计,设计原理图时应该把数字电路模拟电路和RF电路分开;同时分清关键电路与非关键电路以及哪些元器件对位置有要求。在无线传输模块设计中,CCl010的RF_IN(4脚)、RF_OUT(5脚)、L1(10脚)、L2(11脚)等为RF电路,也为关键电路。其ADC相关的加速度传感器电路为模拟电路。对于模拟器件的电源端,如AVDD_ADC(1脚)、AGND_ADC(64脚)、AVDD_MIX_IF(2脚)、AGND_MIX_IF(3脚)、AVDD_LNA_PA(6脚)、AGND_LNA_PA(7脚)、AGND_PA(8脚)等,应慎重考虑滤波性能,尽量避开数字电路部分的噪声干扰。此外晶振电路也为关键电路,而LED指示和按键等电路则属非关键电路。

  设计原理图时,除了要考虑功能的实现、原理的正确外,还要考虑器件的选择。首先,选择的器件应该在市场上容易买到;其次器件的封装既要满足PCB板尺寸的要求,又要考虑焊接的难易程度。对带RF的PCB板来说,器件最好能选择贴片封装的,以降低不必要寄生参数的影响。

  (1)CCl010与天线间的RF收发电路的设计

  本没计采用了Chipeon公司推出的单片、多频段、低功耗、超高频射频芯片CCl010。芯片采用0.35μmCMOS技术制成,内嵌高性能的805l微控制器、32 KB的Flash程序存储器、2 048+128字节SRAM、3通道lO位ADC、4个定时器、2个PWM、2个UART、SPI及26个通用I/O等。CCl0l0适用于家庭自动化安防系统、遥控开锁、遥感勘测、遥控玩具等诸多无线应用领域。本设计采用CC1010实现步态加速度信号的无线采集。

  RF收发部分的电路如图2所示。C31为输入匹配电容,L32为输入匹配电感,同时L32还用于阻止直流偏置信号的输入;C4l、C42和L41共同实现发射输出电路的匹配。通过CCl010内部的发射/接收开关电路收发器得以通过同一个50Ω的天线进行发射/接收操作。Ll、C8和C9组成一个低通滤波器,滤除高频谐波并且增加了频率的选择性,其阻抗为50Ω。元器件参数既可以按照CCl010datasheet上所给的值,也可利用Chipcon公司的SnaartRF Studio软件得到

  

  压控振荡器内嵌在CCl0lO芯片内,使用时只需要外接一个电感L101。电感最好选择线绕电感,根据所给参考值焊接上。然后用频谱仪查看其频率,根据其中心频率是否满足要求,适当调整其参数。L101应尽量靠近CCl0lO,并相对10和11两个引脚呈对称布置,其封装应选择0402或0603的小型封装。

  一般可选择单鞭天线、螺旋天线或在PCB上的环形天线。单鞭天线的长度波长的l/4,可通过式L=7125/f计算。其中,L表示单鞭天线的长度,f为发射/接收频率。环形天线布在PCB上,使用非常方便;但由于其福射能力较差,所以接收/发射性能也稍差些。螺旋天线是单鞭天线和环形天线的一种折中方案,其尺寸大小和接收/发射能力介于两者之间。可根据需要选择合适的天线。一般来说螺旋天线更加实用。

  (2)CCl010与加速度传感器的接口电路设计

  本无线采集系统采用了Freescale公司最新推出的一款低成本、单芯片、三轴加速度传感器MMA7260。该微型电容式加速传感器融合了信号调理、单极低通滤波器温度补偿技术,并提供了4种加速度测量范围,分别为1.5 g、2 g、4 g和6g。

  在CCl010与MMA7260的接口中,首先要考虑噪声问题。因为MMA7260内部采用了开关电容滤波器,有时钟噪声产生,所以需要在MMA7260的XOUT、YOUT和ZOUT三个输出端分别接RC滤波器;其次要考虑电压匹配问题,由于X、Y、Z轴方向的电压输出是0.45~2.85,CC1010的ADC最大输入范围是0~VDD。此处VDD为3.3 V,其范围恰好在ADC的输入范围之内,所以不用考虑额外的分压电阻。CC1010与MMA7260的接口电路如图3所示。R31/C31、R41/C41、R51/C51用于滤除MMA7260内部采样的开关噪声,GS1.GS2用于量程选择。

  

  (3)按键控制、LED指示与报警电路

  本无线采集系统有3个按键S1、S2和S3。其中S1是系统复位键。S2是模式选择键,可使采集系统处于自动工作方式或手动工作方式。采集系统若工作于自动方式,采集与无线传输同步进行;若工作于手动方式,则先把加速度数据存储到存储器中,等按下数据发送开始按键后再启动无线发送。S3是数据采集开始/停止键,用来控制数据采集的开始、停止以及手动工作模式时采集完毕后的数据发送键。LED指示电路包含电源指示灯、发送信号指示灯和接收信号指示灯。报警电路由放大电路蜂鸣器组成,当数据采集完成时,蜂鸣器自动报警。

  2.2 布局设计

  良好的布局是布线成功的前提,布局时应按左端输入右端输出的信号流方向放置元件,并且重点考虑以下几个方面:

  ①首先在Protel中的Keepoutlayer层画出能承受的最大尺寸,让布局始终做到心中有数,不至于PCB板尺寸不合适;

  ②本无线采集系统的放置位置要求天线必须位于PCB板的右上角。射频信号通路越短越好,所以RF电路也应该布局在右上角。RF电路部分的器件应该尽量紧凑,如L101应尽量靠近CCl010,并相对于它的10和1l两个引脚呈对称布置。对于RF_IN和RF_OUT应该遵守紧凑、畅通、阻抗保持均匀不突变这三个原则。

  ③模拟电路分区中最好没有数字电路存在,否则模拟信号非常容易被数字噪声干扰。

  ④晶振应该尽量靠近CClOl0,并与其XOSC_Q1(18脚)和XOSC_Q2(19脚)成对称放置,晶振两端的15pF电容尽量靠近晶振。

  2.3 布线设计

  布线是PCB设计的最后一步。为保证RF电路部分的良好性能,

[1] [2]

关键字:无线收发芯片  步态识别  采集系统  报警电路  环形天线  低通滤波器  分区设计  温度

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/afdz/2008/0602/article_724.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于TMS320C6201的G.723.1多通道语音编解码的实现
下一篇:基于HMS30C7202嵌入式系统的通信程序设计

论坛活动 E手掌握
关注eeworld公众号
快捷获取更多信息
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
无线收发芯片
步态识别
采集系统
报警电路
环形天线
低通滤波器
分区设计
温度

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved