datasheet

基于小波变换与DSP的实时音频视频处理系统

2008-05-27来源: 现代电子技术关键字:DSP  系统复位  小波变换  视频数据  视频格式  音频  小波压缩  图像压缩编码  

  目前,以远程监控、视频会议、可视电话及移动多媒体通信系统为代表的低比特率通信系统在实际中得到了重要应用。面对庞大的音/视频数据量,作为语音及图像处理的压缩技术便在多媒体通信中显得极为重要。随着多媒体通信技术和超大规模集成电路(VLSI)技术的飞速发展,这一技术将会在众多领域得到更为广泛的应用。

  1 音/视频实时处理系统

  低码率视频通信的主要技术问题是音/视频压缩编码技术,即用来实现在满足足够质量和硬件成本的条件下降低所需的码率。小波变换充分利用人眼的视觉特性,克服了重构图像会出现的块效应、蚊子效应、模糊等现象。由于小波变换技术能充分地利用人眼的视觉特性,因此因而用小波变换视频编码将会获得比现在标准得多的压缩效果。本文介绍一种基于ADV611,CT8021芯片同时结合TI公司的TMS320C6201芯片实现音/视频实时处理系统。在该实时系统中,DSP芯片作为控制核心、一方面要管理ADV611,CT8021,存储器和通信接口,另一方面要对ADV611的图像压缩效果进行调解,对数据速率实时控制。系统实现方案原理图如图1所示。

  

  1.1 系统硬件结构

  系统主要功能是实现远程场景音视频的采集、数字化、音/视频的压缩和解压、摄像系统云台方位以及摄像头的控制、自动开机和关机等功能。其中音视频数据的打包、解包、摄像系统云台方位以及摄像镜头的控制等功能DSP芯片TMS320C6201来完成。远程场景及音频压缩信息通过入网设备在Internet上实现远程实时传输。如图2中,原始制式PAL(720288,50帧/s)的视频信号经过图像采集端的视频A/D转换成CCIR656(8位27MHz)的数据流,再通过ADV611进行小波压缩编码。同时,原始的音频信号也经过音频采集端的A/D转换为PCM信号,再通过CT8021完成G.723.1压缩编码。经过压缩的音/视频数据都送入TMS320C6201中,并由TMS320C6201参照MPEG-2协议完成音/视频数据的打包;经过打包的数据由TMS320C6201送出,这里使用异步通信器件TL16C550B连接TMS320C6201和入网设备,这样做可以简化DSP的软件实现提高系统的可靠性和可扩展性。最后打包的音/视频数据由入网设备发送到Internet上,接收端功能框图如图3所示。从远端接收到压缩数据后,经过TL16C550B送到DSP中,先在存储器中缓存,然后根据MPEG-2协议进行解包,分解成独立的音/视频数据;然后依据ADV611和CT8021的数据申请,将压缩视频数据发送给ADV611解压,将压缩音频数据发送给CT88021解压。ADV611恢复出的图像数据仍以CCIR656的标志格式发送给视频D/A转换为视频模拟信号,最终由显示器回放出来,CT8021恢复出的语音数据仍以PCM标准格式发送给音频D/A转换为音频模拟信号,由扬声器回放出来。

  

  

  1.1.1 音频处理模块

  该模块的核心芯片CT8021是采用美国DSP Group公司生产的全双工的语音压缩解压缩芯片。他可为基于H.320协议的多媒体系统。该芯片实现了ITU-TG,723.1所规定的5.3kb/s和6.3kb/s两种比特率语音。这两种比特率是H.263建议所规定的国际标准语音速率,适用于线路带宽较小的多媒体通信。该芯片处理速度快,可实现语音的实时处理,其内部结构如图4所示。

  1.1.2 视频处理模块

  在该设计中,用小波变换进行图像压缩是采用硬件实现的,使用了AD公司生产的ADV611单片、多功能、全数字的CMOS超大规模集成电路。小波压缩核采用双正交(7,9)小波变换。其内部结构如图5所示。他支持对CCIR-656国际数字视频标准进行高画质的无损或有损视频压缩和解压缩并支持实施隔行扫描的视频数据。编码时,数字视频从数字视频接口输入,经帧抽取和小波变换,送入量化器进行量化。量化后的数据送入熵编码器,进行游程编码和霍夫曼编码,产生最后的压缩数据流,送入集成于片内的51232位大小的FIFO缓存。当片内的FIFO的数据量达到主机的预设值时,ADV611发出中断,通知主机取走数据。解码过程与之相反,压缩数据由主机送入FIFO,解码后产生CCIR-656格式的数据视频数据,从数字视频接口输出。

  ADV611与其前期产品ADV601,ADV601LC相比,他不仅有更宽的温度范围(-25~+85℃),而且采用硬件减帧技术,可获得更高的压缩比(最大可达7 500:1)并且增加一种称为特性盒控制的功能。该功能允许一帧中某一矩形区域相对于其他区域有较低的压缩比或完全不进行压缩。对这个主芯片的控制采用TI公司的高速定点DSP芯片TMS320C6201。他的内部工作频率为200MHz,CPU有8个并行的功能单元,每个时钟周期内可以并行执行8条指令,所以用C语言编程时也能完全满足对ADV611控制速度的要求。

  

  视频解码兼模/数转换芯片采用PHILIPS公司的视频芯片SAA7111,他可接收复合电视信号及S端子信号输入,输出支持YUV422/411,CCIR656及RGB565等视频格式,这里使用YUV422;视频图像恢复采用AVERLAGIC公司的视频芯片AL250,他支持YUV422与RGB565隔行输入视频格式,输出则为计算机显示器CRT接收的RGB(VGA)逐行视频格式,可方便地利用计算机观察视频。这2个芯片都含有控制寄存器,可通过I2C总线控制。

  将ADV611接收来自SAA7111的数字视频信号进行压缩,DSP将通过访问ADV611获得压缩数据;将ADV611设置为解压缩模式时,DSP将压缩数据发给ADV611进行解压缩处理,而SAA7111仅为ADV611提供时钟信号。

  此外,为提高系统的集成度和灵活性。系统使用了一片ALTERA公司的CPLD-EPM7128,他将I2C电路、DSP启动电路、地址译码电路、对时钟信号VCLK的二分频电路、读写信号产生电路及编码解码切换电路等做在内部。电源芯片为TI公司的TPS73HD301,他接收5V电压,输出3.3V和2.5V电压,并提供系统复位脉冲。

  

  1.1.3 I2C总线特殊设计

  DSP的扩展能力不强没有多余的I/O口。无法实现类似单片机的I/O口集电极开路允许总线路“线与”。这时可用三态门的控制单元(使用D触发器),在需要释放的总线时关闭三态门即可。

  1.1.4 音视频的复用

  本系统复用器的设计是在MPEG-2音/视频国际标准的第一部分ISO/IEC13818-1系统层语法规范的基础上,采用TMS320C6201信号处理器来实现。其中为实现一套节目音频/视频的解码同步,在码流中需要插入各种时间标记,系统控制等信息。最后送到网络适配器得到与传输信道相匹配的标准输出码流后,送往信道,复用器还提供整个编码系统的系统时钟。

  2. 系统软件设计

  DSP在主程序中计算采集端ADV611图像压缩编码的控制参数。ADV611通过控制寄存器提供给用户3种控制图像效果和数据流量手段。首先是设置量化系数,即通过改变小波分解后各个不同频带数据的量化权重达到数据压缩的目的,其次是减帧,ADV611可以从50帧/s减到2帧/s。最后是特性盒控制,ADV611能够在722288的一帧图像中再设置一个显示区,并将该区之外的图像衰减,从而利用这种减小有效画幅尺度的方法压缩数据。这个显示区域大小的设备是通过调节ADV611内部品质框数据实现的。主程序中DSP将依据用户调节命令,计算修改ADV611中的控制寄存器参数。

  本系统DSP控制程序的设计关键是如何高效地协调完成各类控制任务,避免由于任务进程安排不当而引起的数据传输意外中断,以压缩端为例,如图6所示,DSP程序将BSP数据发送和数据接收控制以及ADV611,CT8021的服务请求作为中断处理,以提高这些任务的响应速度。为了避免通信串口的数据丢失,程序允许BSP发送中断和接收终端在ADV611和CT8021的服务请求中断发生并立即响应。在程序的主循环部分中,DSP通过一系列的状态判断完成发送缓冲区数据写入、接收缓冲区数据读取、图像压缩编码参数计算等任务。

  

  3 结语

  本系统选用了先进的小波变换芯片ADV611,CT8021和DSP TMS320C6201芯片实现实时音频视频处理系统。有效地控制保证了音频视频的可靠传输。通过测试本系统DSP还有很多空闲时间,而且清晰的软件结果很容易添加进新的功能算法。从而进一步丰富该系统的功能。

关键字:DSP  系统复位  小波变换  视频数据  视频格式  音频  小波压缩  图像压缩编码  

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/afdz/2008/0527/article_692.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:多媒体处理器DM642及其在视频监控中的应用
下一篇:基于DSP的音频会议信号合成算法研究

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

汽车音频工程师的DSP开发方法论

娱乐。早在1923年,美国首先在轿车内装配了无线电收音机,此后电子技术不断发展,DSP逐渐介入汽车的音频系统,汽车音频的音质得以不断提升。 而在音频DSP处理器设计方面,ADI的江湖地位因为其独特的SHARC、 Blackfin和SigmaDSP多个系列产品独具一席,尤其SigmaDSP处理器,当属设计汽车音频系统的理想之选。今天就为大家介绍下该系列产品,及其专用的图形开发工具SigmaStudio。 基于SigmaStudio的DSP开发,就像玩“连连看”SigmaDSP系列处理器是完全可编程的单芯片音频DSP,可与集成式采样速率转换器、模数转换器、数模转换器和输出放大器封装在一起,大幅减小了电路面积与设计复杂度
发表于 2019-03-26
汽车音频工程师的DSP开发方法论

物联网处理的最佳选择:DSP +CPU

一般认为,在需要数字信号处理时(在调制解调器的物理层、智能扬声器的麦克风波束形成或跟踪设备的地理定位时)要使用DSP。如果需要数字控制(运行协议栈或管理音频编解码器或GNSS的控制方面 ),则要使用MCU。由于典型的物联网设备需要这两种功能,因此必须使用两个或更多内核。对于对续航时间要求不高的高利润设备,这也许不是什么大问题,但对许多物联网应用而言这可能是一个严重缺点。对于这类应用,经优化的复合处理器可以更经济高效地满足这两种需求,并延长设备续航时间。我们对此进行了非常详细的分析;我们认为这样的解决方案不仅可行,而且在各种物联网应用中具有很强的竞争力。想想共享单车或共享踏板车。这些设备显然需要跟踪,因此嵌入式设备必须能够
发表于 2019-03-14

BISTel全新AI系统连接MindSphere,加快客户智能制造之旅

深圳和上海,2019年1月18日BISTel是智能制造的自适应智能(AI)解决方案的领先供应商,它已加入MindSphere合作伙伴计划,西门子的工业物联网解决方案和技术提供商合作伙伴计划。预计BISTel应用程序将在MindSphere平台Q1 2019上提供.BISTel将通过宣布推动中国智能制造业增长的新型人工智能产品,讨论该公告的重要性以及如何帮助其扩展在中国的业务。 1月18日在深圳和1月21日在上海举行的两场新闻发布会上,BISTel高级管理人员将宣布重大投资和扩展计划,以帮助中国发展其智能制造市场或工业4.0。 BISTel的高级数据分析平台eDatalzyer®及其设备实时健康监测和预测维护
发表于 2019-03-05

STM32F4学习笔记1——如何使用DSP库

配置 1、 安装DSP库文件 2、 配置编译环境, 上述添加是在project→options→C/C++→Define中添加,并且分割用逗号,即__FPU_PRESENT=1,__FPU_USED=1,ARM_MATH_CM4,__CC_ARM3、 在需要调用DSP函数的文件中加上#include "arm_math.h" 4、 需要在project中添加用到的.c文件,看你用的是哪个函数,就添加哪个.c文件。.c文件目录为 XXX\Drivers\CMSIS\DSP_Lib\Source
发表于 2019-02-19
STM32F4学习笔记1——如何使用DSP库

STM32F4xx FPU/DSP使用注意事项

__CC_ARM。以使用sin,cos 运算举例,需要调用arm_sin_f32()以及arm_cos_f32(),这两个函数定义在arm_sin_f32.c 和arm_cos_f32.c中,需要在工程中加入这两个c 文件。* 在 ST 库文件包中的文件目录如下:\stm32f4_dsp_stdperiph_lib\STM32F4xx_DSP_StdPeriph_Lib_V1.1.0\Libraries\CMSIS\DSP_Lib\Source\FastMathFunctions* 在keil 安装目录下的文件目录如下:\Keil\ARM\CMSIS\DSP_Lib\Source\FastMathFunctions当用到更多数学运算, 如开根号
发表于 2019-02-15
STM32F4xx FPU/DSP使用注意事项

毫米波传感器轻松实现细微运动检测和人数统计智能化

算法用于同时对多个对象进行区分和跟踪。此算法会在一段时间内监控点云的移动历史,从而测量场景中移动物体的大小、精确定位这些物体的位置并跟踪物体在一段时间内的移动和位置历史。借助该算法,更高级别的应用可以确定在环境中移动的人员的确切位置和行进方向。表 2. 人数统计参考设计的性能规格。图 6. IWR1642 上的软件中所实现的处理链的方框图(在人数统计参考设计中提供)。这些算法是在 IWR1642 上的软件中运行的示例处理链中实现的。图 6 展示了该处理链,在板载 C674x DSP 以及 Arm® Cortex-R4F 微控制器上运行的数字信号处理 (DSP) 代码实现了该处理链。该处理链的实现和上述算法包括可调整参数,因此可对软件
发表于 2019-01-09
毫米波传感器轻松实现细微运动检测和人数统计智能化

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved