datasheet

交互式多模型在警戒类雷达跟踪中的应用研究

2008-03-19来源: www.eccn.com关键字:多模型  速度图  滤波算法  实现模型  时间常数  机动目标  应用研究  雷达跟踪  警戒

  尹瑞,王荫槐,王 峰

  (南京电子技术研究所,江苏省南京市210013)

  0引言

  IMM(交互式多模型)方法是Blom H.A.P.于1984年提出的。多模型方法主要用于特性随时问变化系统的状态估计,所以它特别适用于机动目标的跟踪。一种典型的例子就是对进行机动飞行的飞机的跟踪。在IMM方法中,假定有有限多个目标模型存在,每个模型对应于不同机动输入水平。在计算出各模型为正确的后验概率之后,就可以通过对各模型正确的状态估计加权求和来给出最终的目标状态估计,加权因子为模型正确的后验概率。IMM估计器是已知最好的单次扫描状态估计器,被广泛应用于各个领域,但还没有应用在机载警戒雷达的目标跟踪中。本文选取某警戒雷达产品的某几条航迹用IMM方法进行滤波,把其滤波结果与目前实际工程中正在使用的.Kalman(Singer模型)滤波进行精度比较,实现模型的优选。

  1算法流程

  本次仿真过程主要分为数据的读人、多模型滤波、数据的输出3个部分。数据的读入过程包括航迹同放后机体系数据读人、航迹对应的GPS数据的读入以及把读入的待处理数据进行坐标系的转换。多模型滤波过程即把上步中读入并转换成惯性系的数据分别在x、y、z轴进行多模型滤波。数据的输出过程包括把多模型滤波后的轨迹输出,并把此轨迹与实测的GPS(全球定位系统)轨迹以及用Kalman(Singer模型)滤波的轨迹进行比较,统计两者的误差大小。具体流程图见图l。

  

  

  2仿真输人数据

  本仿真随机选取了某雷达实录的两条航迹,采用不同的模型组合对其进行滤波,分析对应于不同的机动性采用哪两种模型组合呵以最大限度地提高滤波的精度,并且以GPS测量数据为基准,把其滤波结果与目前常用的Kalman(Singer模型)滤波精度进行比较,得出有参考价值的结论。

  目标轨迹l大致为:在时间42 138 s目标从经度120.667。、纬度40.250°匀速飞行到经度123.172°、纬度62.465°,然后目标在时间43 065 s处360。大转弯,终点为经度123.118°、纬度62.521°。目标飞行的轨迹1参考惯性系量测二维经纬度图如图2所示,目标飞行的速度图如图3所示。

  

  

  

  

  目标轨迹2大致为:在时间39 163 s目标在经度121.456°、纬度65.525°处匀速飞行到经度123.24l°、纬度61.89l°转弯机动飞行到经度l 22.25 l°、纬度62.215°。目标飞行的轨迹2参考惯性系量测二维经纬度图如图4所示,目标飞行的速度图如图5所示。

  

  

  

  

  3仿真输出数据

  3.1航迹l

  对航迹1分别采用CV模型与CA模型交互、CV模型与Singer'模型交互、CV模型与"当前"统计模型交互、Singer'模型与"当前"统计模型交互,得到一组仿真图和一组仿真数据。其中CV模型和cA模型组合仿真结果如下:CV模型交互CA模型滤波、实测GPs、Kalman(Singer模型)滤波二维经纬度轨迹如图6所示,CV模型交互CA模型滤波和Kalman(Singer模型)滤波的距离误差如图7所示,经度误差如图8所示,纬度误差如图9所示。4种模型两两交互,共有6种有效模型组合。航迹1的6种模型组合滤波的距离误差统计如表l所示,经度误差统计如表2所示,距离误差统计如表3所示。航迹1用Kalman(Singer模型)滤波的距离误差为64.453 8 m,经度误差为0.002 2°,纬度误差为0.011 l°。

  

  

  

  

  

  

  分析航迹l的仿真图表可以看出,CV模型与CA模型交互、CV模型与Singer模型交互、CV模型与"当前"统计模型交互滤波的距离误差达到62.4 m,距离误差比目前常用的Kalman(Singer模型)滤波的距离误差小2 m左右。cA模型与Singer模型交互、CA模型与"当前"统计模型交互的距离误差都比Kalman(Singer模型)滤波的距离误差大l m左右。Singer模型与"当前"统计模型交互距离误差比Kalman(Singer模型)滤波的距离误差小l m左右。经度和纬度的量纲很大,交互模型中包含CV模型的组合经度可以提高0.000 l°,纬度可以提高0.000 9°。Singer模型与"当前"统计模型交互的纬度提高O.000 2°,经度精度没有提高。由此可见,对于此条航迹,即目标作了927 s的匀速运动后转弯,CV模型与其余3种模型两两组合以及Singer模型与"当前"统计模型的组合都提高了滤波的精度,其中以cV模型和"当前"统计模型交互滤波提高的精度最高。

  

  

  3.2航迹2

  对航迹2也可分别采用cV模型与CA模型交互、CV模型与Singer模型交互、CV模型与"当前"统计模型交互、Singer模型与"当前"统计模型交互,得到一组仿真图和一组仿真数据。其中,cA模型与"当前"统计模型组合仿真结果如下:cA模型交互"当前"统计模型滤波、实测GPS、Kalman(Singer模型)滤波二维经纬度轨迹如图10所示,CA模型交互"当前"统计模型滤波和Kalman(Singer模型)滤波的距离误差如图l l所示,经度误差如图12所示,纬度误差如图13所示。4种模型两两交互,共有6种有效模型组合。

  

  

  

  

  

  

  

  

  航迹2的6种模型组合滤波的距离误差统计如表4所示,经度误差统计如表5所示,距离误差统计如表6所示。航迹2用Kalman(Singer模型)滤波的距离误差为103.600 3 m,经度误差为0.006 4°,纬度误差为0.011 6°。

  分析航迹2的仿真图表可以看出,cV模型与CA模型交互、CV模型与Singer模型交互、CV模型与"当前"统计模型交互滤波的距离误差达到106.7 m,距离误差比目前工程上使用的Kalman(Singer模型)滤波的距离误差大3 m左右。CA模型和Singer模型交互距离误差比Kalman(Singer模型)滤波的距离误差小3 m左右,CA模型与"当前"统计模型交互的距离误差比Kalman(Singer模型)滤波的距离误差小4 m左右。Singer模型与"当前"统计模型交互距离误差比Kal.

  man(Singer模型)滤波的距离误差小2 m左右。经度和纬度的量纲很大,cA模型与"当前"统计模型交互的经度误差和纬度误差都减小了0.000 1°。由此可见,对于此条航迹,即目标做了约l 037 s的匀速运动后做了约800 s的机动,CA模型与Singer模型组合、cA模型与"当前"统计模型组合、Singer与"当前"统计模型组合都提高r滤波的精度。包含CA模型的组合提高的精度较为明显,其中以CA模型与"当前"统计'模型交互滤波提高的精度最高。

  4结论

  本文用cV模型、cA模型、Singel'模型以及"当前"统计模型两两交互的多模型算法来处理某警戒类雷达某天试飞的两条航迹,把其仿真得出的一系列结果与目前工程中用来处理航迹滤波的Kalman(Singer模型)算法进行比较,得出了如下结沦:

  a)Kalman(Singer模型)跟踪简单、计算方便,实时性强,在目标跟踪滤波中具有一定的意义。

  b)在飞机做非机动运动或者做小机动运动时,用Kalman(Singer模型)来处理航迹可以达到较好的效果,但精度要比包含CV模型交互算法的精度低。

  c)在飞机作高机动时,用多模型滤波算法进行跟踪是有其优越性的,可以在一定程度上提高滤波的精度。

  d)多模型算法提高滤波精度的前提是目标运动模型必须包含在多模型所设定的先验模型集中,并且其假设的自相关时问常数要与机动运动自相关时间常数接近,这样可以最大限度提高滤波的精度。

  e)多模型算法中用Singer模型与"当前"统计模型交互的适用范围比较广。Singer模型实质是一种全局统计模型,而"当前"统计模型是一种即时统计模型。因此,对应于不同的机动情况,此两种模型组合的滤波精度一定会比单模型的滤波精度高,但其精度比目标运动模型包含在多模型所设定的先验模型集中滤波的精度低。

  5结束语

  IMM滤波算法是自适应滤波算法,它的跟踪效果比较平稳,在目标发生机动时不会出现较大的误差。但多模型算法实质上是一种折中的算法,它通常需要对目标的机动特性做出合理的机动假设,选择正确的先验模型对此算法的滤波结果有比较大的影响。因此,模型的优选问题还需要进一步研究,把交互式多模型算法运用在实际工程中还需要一定的时间。

 

关键字:多模型  速度图  滤波算法  实现模型  时间常数  机动目标  应用研究  雷达跟踪  警戒

编辑:ssb 引用地址:http://www.eeworld.com.cn/afdz/2008/0319/article_548.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:某图书馆综合布线、有线电视、安保图(成套)
下一篇:智能紫菜烤箱干湿温度控制装置

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

让AI模型说话的背后:AI可知论与不可知论的纠葛缠斗

,结果很可能就是让人类说出违心的谎言。AI也是一样,也许强行在AI算法中加入可解释性,得出的结果很可能只是一种“针对于解释需求的答案”,并不能发挥出人们所期望的作用。Geoff Hinton可以说是一位坚定的“AI不可知论”支持者。让AI模型说人话不过在几天前,佐治亚理工学院就推出了一种让AI用人类语言解释自己行为的模型。整个模型的训练过程,建立在一款“小青蛙过马路”的古老游戏上。游戏中玩家要操控着小青蛙前后左右躲避来往车辆,成功到达马路对岸。佐治亚理工学院先是收集了大量的人类样本,让人类实验员玩一遍游戏,然后再回溯整个游戏过程,解释出自己的每一步动作有哪些意图。例如向左走是想躲避开后方来车,向前跳跃是因为漂浮的荷叶刚好来到自己面前。这样一来
发表于 2019-04-15
让AI模型说话的背后:AI可知论与不可知论的纠葛缠斗

机器学习模型精确估算锂离子电池充电水平

据外媒报道,电动汽车由可充电的锂离子电池(LIB)驱动,但是目前,人们还没有完全了解和完善锂离子电池。鉴于电动汽车有望取代燃油车,任何可以提升锂离子电池性能的研究将有利于电动汽车发展,改善环境。美国哥伦比亚大学(Columbia)的两位教授Matthias Preindl和Alan West正在研发一种机器学习模型,可以更精确地估算锂离子电池的充电水平。目前,估算电池充电状态仍有5%的出错率,该团队研发的模型目标是将出错率降至1%,该项研究获得了哥伦比亚数据科学研究所(Data Science Institute)种子基金的资助。大家都知道,电池管理系统主要用于捕捉电池的健康状态,预测期剩余寿命。上述两个概念可帮助电动汽车车主知道
发表于 2019-03-21

自动驾驶的三种进阶模型

  我看到的那辆Waymo已经走远,但我相信自动驾驶将会离我们的生活越来越近,在走向我们生活的路途中,同时给创业者提供机会,只要你真的“看透”。  1925 年 8 月, 世界首辆自动驾驶汽车亮相在纽约街头;去年 10 月,我在硅谷的街头看到 Waymo 的一辆自动驾驶车。只是,九十多年前的自动驾驶并没有让驾驶员脱离束缚,当时美国陆军电子工程师 Francis P. Houdina 坐在另外一辆用无线电操控着前车的汽车上,你可以想象成有点类似小孩玩的遥控玩具车,但肯定不是我们所看到通过电脑控制的无人驾驶技术。  以 Waymo 为代表的第一类  说起自动驾驶,第一类肯定要谈到 Waymo。Waymo 模式脱胎于谷歌最早创立
发表于 2019-03-12
自动驾驶的三种进阶模型

周航:自动驾驶的三种进阶模型

我看到的那辆Waymo已经走远,但我相信自动驾驶将会离我们的生活越来越近,在走向我们生活的路途中,同时给创业者提供机会,只要你真的“看透”。1925 年 8 月, 世界首辆自动驾驶汽车亮相在纽约街头;去年 10 月,我在硅谷的街头看到 Waymo 的一辆自动驾驶车。只是,九十多年前的自动驾驶并没有让驾驶员脱离束缚,当时美国陆军电子工程师 Francis P. Houdina 坐在另外一辆用无线电操控着前车的汽车上,你可以想象成有点类似小孩玩的遥控玩具车,但肯定不是我们所看到通过电脑控制的无人驾驶技术。以 Waymo 为代表的第一类说起自动驾驶,第一类肯定要谈到 Waymo。Waymo 模式脱胎于谷歌最早创立
发表于 2019-03-11
周航:自动驾驶的三种进阶模型

碳化硅MOSFET的短路实验性能与有限元分析法热模型的开发

摘要:本文的目的是分析碳化硅MOSFET的短路实验(SCT)表现。具体而言,该实验的重点是在不同条件下进行专门的实验室测量,并借助一个稳健的有限元法物理模型来证实和比较测量值,对短路行为的动态变化进行深度评估。 前言        就目前而言,碳化硅(SiC)材料具有极佳的的电学和热学性质,使得碳化硅功率器件在性能方面已经超越硅产品。在需要高开关频率和低电能损耗的应用中,碳化硅MOSFET正在取代标准硅器件。半导体技术要想发展必须解决可靠性问题,因为有些应用领域对可靠性要求十分严格,例如:汽车、飞机、制造业和再生能源。典型的功率转换器及相关
发表于 2019-02-27
碳化硅MOSFET的短路实验性能与有限元分析法热模型的开发

责任敏感安全模型(RSS)获得全球认可

汽车技术供应商法雷奥(Valeo)近日宣布,采用英特尔的自动驾驶汽车安全决策模型,即责任敏感安全模型(RSS)。此外,百度已于今年早些时候宣布,将RSS应用于其自动驾驶汽车开源项目Apollo——这也是该技术的首个开源实现。与此同时,多国政府和行业也已将RSS视为自动驾驶汽车安全的典范。 “我们的全球合作伙伴采用RSS模型,并愿意在基于RSS模型的安全标准上投资,这说明,他们非常看好安全自动驾驶的未来前景。” ——英特尔资深首席工程师、Mobileye自动驾驶汽车标准副总裁Jack Weast 为何重要:安全成为公众接受自动驾驶汽车的最大障碍之一,汽车行业越发需要建立一个强大、透明且技术中立
发表于 2019-01-09

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved