三相双向功率/电度表芯片SA9105F的原理与应用

2006-05-07 15:49:43来源: 国外电子元器件

功率/电度表芯片,它内部集成了三相功率/电能测量所需的电压和电流检测、A/D转换器和功率计算等功能。SA9105F在外围连接少量的元件,即可构成一个功率/电能仪表或一个控制系统中的部件。文中给出了SA9105F的原理、特性、功能及应用电路。

SA9105F三相电能仪表集成芯片非常适用于工业/民用或电能控制系统的设计。它输出的脉冲串可用来指示能量的传送方向,由于其脉冲频率正比于能量消耗的大小,因此一段时间内所累积测量的功率结果就确定了能量消耗。因而可用于有功功率的测量方面,同时,SA9105F还考虑到了功率因素

1 封装及管脚描述

SA9105F集成电路有两种封装形式,其中SA9105FPA为DIP-40封装,SA9105FFA为PLCC-44封装,图1是DIP-40封装的管脚分布图,表1所列为其引脚功能说明。

表1 SA9105F的管脚功能描述

管脚序号 标号 功能描述 管脚序号 标号 功能描述
35 GND 36 COP2 连接A/D转换电容的外部循环电容
28 VDD 电源电压 30 CON3
16 VSS 负电源电压 31 COP3
6 IIN1 电流检测输入:A相 13 CONP
7 IIP1 12 COPP
34 IVP1 电压模拟量输入:A相
电压模拟量输入:B相
电压模拟量输入:C相
1 CIN1 连接A/D转换电路的内部循环电容
33 IVP2 40 CIP1
32 IVP3 3 CIN2
8 IIN2 电流检测输入:B相 2 CIP2
9 IIP2 5 CIN3
10 IIN3 电流检测输入:C相 4 CIP3
11 IIP3 15 CINP
25 DIR 方向指示输出 14 CIPP
19 OSC1 连接到晶体或陶瓷振荡器(OSC1:输入;OSC2:输出) 29 VREF 连接到电流调节电阻
20 OSC2 27 TP27 测试管脚,与VSS相连
21 FOUT1 脉冲输出 17 TP17 厂家测试管脚
23 FOUT2 18 TP18
38 CON1 连接A/D转换电路的外部循环电容 22 TP22
39 COP1 24 TP24
37 CON2 26 TP26

2 主要特征

SA9105F的主要特征如下:

●可进行双向一、二、三相功率/电能测量;

●符合IEC521/1036的1组交流电能表技术要求;

●工作温度范围宽;

●用电流互感器作电流检测元件;

●具有良好的长期稳定性;

●调试方便;

●内置电压基准;

●具有两路输出脉冲格式可选;

●具有防静电保护功能。

3 功能描述

SA9105F是数字/模拟混合型集成电路,可进行三相电能的计算,在1000:1的范围内,其精度优于1级。

SA9105A芯片内集成了三相电能测量所需的全部功能,如电压、电流检测端的A/D转换器、功率的计算和能量的积分等。其内部的偏移误差可通过程序加以修正。

SA9105F产生的脉冲频率正比于测量所得的功率,它有两种频率输出格式(FOUT1、FOUT2)可供选择。并能以脉冲频率形式输出有功功率的瞬时值,其功率的方向则以脉宽的变化来反应。

3.1 功率的计算

图2是SA9105F的应用电路图。从电路中可以看出,来自A、B、C三相的电压信号被转换成电流并加到电压检测端口IVP1、IVP2和IVP3。

电路中的主电压(3×230VAC)被分压电路分压至14V,通过电阻R15、R16和R17加到电压检测端口,以使得输入到电压检测端口的A/D转换器的输入电流为14μA

在额定条件下,电流互感器的匹配电阻上的电压降通过电阻R8、R9(A相),R10、R11(B相),R12、R13(C相)转换成16μA的电流传送给电流检测端口IIN1、IIP1;IIN2、IIP2;IIN3、IIP3。

在这种结构条件下,当主电压为3×230V、额定电流为80A时,SA9105F集成电路的FOUT1和FOUT2的输出频率是64Hz。此时1个脉冲相当于3×18.4kHz=862.5Ws的功率消耗。

3.2 模拟输入

把SA9105F的电流或电压检测端(IIP、IIN或IVP)通过保护二极管与VDD或VSS相加,可有效地防止在模拟运放输入端出现的过压现象。

3.3 静电保护和功耗

集成电路SA9105F的输入/输出端口匀有静电放电保护。在5V供电时,SA9105F的总功耗小于50mW。

3.4 脉冲信号输出

在上述额定条件下,累计的功率消耗被转换成64Hz的脉冲串,从FOUT1和FOUT2输出。脉冲输出信号提供电能和方向的信息,FOUT1和FOUT2是两种脉冲输出形式,它们的区别在于:电能流动的方向在FOUT1上表现为占空比的倒置,而在FOUT2上表现为脉冲宽度的变化。

计算输出频率(f)的公式为:

f=11.16×FOUTX{(FOSC/3.58MHz)[(II1IV1)+(II2IV2)+(II3IV3)]/3I 2 R}

式中,FOUTX是额定条件下的频率值(64Hz);FOSC为振荡器频率(2MHz......4MHz);II1、II2、II3为电流检测端的输入电流(在额定条件下为16μA);IV1、IV2、IV3为电压检测端的输入电流(在额定条件下为14μA);IR:参考电流(典型值为50μA)。

4 应用设计

在图2 所示的应用中,已标出了所需元件,电流信号的检测使用电流互感器。以下是SA9105F应用电路中的一些元件的典型值和主要作用:其中,C7、C9、C10和C11是外部循环电容,用于A/D转换器。C7的典型值为2.2nF,C9、C10和C11的典型值取560pF。在实际应用中,电容的取值决定信号的稳定性,所有电容的误差均应在±10%以内;C4、C5、C6和C8是内循环电容,用于A/D转换器,容量一般在0.5nF~5nF之间,典型值可取3.3nF。

电流互感器的输出通过限流电阻(R8~R13)接到SA9105F的电流信号检测端。电阻阻值的选择应考虑额定条件下输入到SA9105F电流检测端的电流(均方根值为16μA),其值计算如下:

A相:

R8=R9=(IL1/16μARMS)×R18/2

B相:

R10=R11=(IL2/16μARMS)×R19/2

C相:

R12=R13=(IL3/16μARMS)×R20/2

这里:ILX是额定条件下电流互感器的二次电流;R18、R19、R20为电流互感器输出端的负载电阻;R1、R1A和R15可用来确定A相电压检测端的电流;R2、R2A、R5、P5和R16用于确定B相电压检测端的电流;R3、R3A、R6、P6和R17用来确定C相电压检测端的电流。它们的阻值选择应使电压检测输入端的输入电流在额定条件下为14μARMS。电容C1、C2和C3主要用来耦合和相位补偿。

R14和P14用来为芯片提供偏置和基准电流。其推荐值为:R14+P14=24kΩ,R14的改变会引起输出频率的改变(注:ΔR=+5%,Δf=+10%)。

XTAL是彩电振荡电路晶体振荡器,该振荡器的频率在片内被分频至1.7897MHz,并提供给数字电路和A/D转换器。

关键字:功率  芯片  原理  应用

编辑: 引用地址:http://www.eeworld.com.cn/Test_and_measurement/zhzx/200605/2292.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
功率
芯片
原理
应用

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved