datasheet

解析射频及微波校准源测量方法

2016-10-08来源: elecfans关键字:射频  微波校准源  测量方法
  在开发中进行测量,可用以评估是否达成目标规范的性能,同时在测试制程中的产品时将面临各种挑战,包括确认使用的方法是否可提供较为确定的所需数值范围、缺乏某项参数的追溯,以及确认可作为交叉检查的替代技术,以验证选择的方法。使用者同时须有可迅速取得的设备、运用合适的方法,以进行例行性的重新校准工作。本文将简述仪器设计架构,并概述所运用的测量方法。

  利用具备外部校准探头仪器进行测试

  信号源频率范围介于10Hz~4GHz之间,振幅则介于+24~-130dBm间,专门用于产生绝大多数常见RF及微波校准应用所需的信号,并具有一定的准确度,而无须在使用时以其他设备进行监控或特性化(Characterize)输出,如使用功率分离器与功率传感器测量输出振幅、使用调变分析仪监控调变电平等。

  为协助输出信号直接传送至负载或待测单元(UUT)输入,并将因缆线与互连而产生的效能低落情形降至最低,因此新型仪器配备外部校准探头(Leveling Head),信号会自主机中产生,并馈入包含电平探测器与衰减器电路的外部校准探头。

  许多校准应用大多须要获得高纯度的信号,且常须要使用外部滤波器,而外部校准探头的设计为藉由输出信号路径内设置合适滤波器的方法,可降低谐波与假性含量。此外,此项设计亦具有内部类比调变功能,调频(FM)以最高300kHz的速率于频率合成器内产生,而调幅(AM)则以最高220kHz的频率在输出放大与水平电路(Leveling Circuit)内产生。此外,测量需求包括水平振幅电平(RF功率)、输出电压驻波比(VSWR)及调变。

  功率传感器无法支持较低不确定度测量

  RF电平(Level)测量值为参考频率的绝对值,接着再测量相对于此参考频率数值的频率响应,即平坦度,而关于100kHz参考点的测量,可采用交流电(AC)电压测量标准测量在已知50Ω终端上形成的均方根(RMS)电压,再计算相应的功率电平。RF功率计与功率传感器用于高频测量,此为常用的技术,若能使用含修正资料且正确校准的功率传感器,将可进行不确定度极低的追溯测量工作。

  然而,此项技术仍无法提供够低、约-50dBm左右的不确定度。测量工作可利用现代频谱分析仪接近线性的振幅响应,以较低的电平进行,而此类仪器的线性绝大多数均取决于用于数字化中频(IF)信号的交流对直流(AC-DC)转换器,以便在数字领域中进行后续处理。测量的分析仪线性误差通常可大幅低于在测试中预估的不确定度,即在70dB的范围内小于0.02dB,频谱分析仪依功率传感器测量的UUT输出,在- 47dBm标准化,且不须更改分析仪的设定,即可在50dB范围内,最低在-97dB进行测量,之后,频谱分析仪即在-97dBm标准化,以于-130dBm进行测量。

  信号源输入阻抗可预估失配程度

  知道信号源,即信号源端匹配的输入阻抗不仅对确认规范而言十分重要,亦可让使用者预估其应用中失配的不确定度。VSWR或输入回流损失测量技术通常用于连接「Leveling」准位来源的被动式装置,将有窒碍难行之处并产生错误的结果,且进行此工作时,难以有实验室能为产生器以符合标准的方式进行信号源端匹配(Source Match)测量,且鲜少有制造商会在自身的文献中记载方法。如图1所示,此架构选择的方法为输入回流损失电桥。

  

  图1 信号源VSWR测量架构

  信号发生器从UUT输出频率,以约莫10Hz的少许固定频率偏移插入信号。UUT输出与反射信号将以10Hz的比率加减,此信号以设为「零跨距(Zero Span)」模式的频谱分析仪侦测,并使用指针测量最大与最小振幅差异及时间,参考电平亦以UUT取代开路与短路测量,并计算电压反射系数与VSWR。

  AM与FM的精准度目标为高于0.1%,且失真小于0.05%(-66dB),然而传统测量方式却难以达成此目标,但可使用配备测量解调器的频谱分析仪进行测量,解调器采用数字信号处理,以数字化IF资料的方式,从取得的资料获取所需的信号特性(图2)。

  

  图2 频谱分析仪信号处理

  为何须为AM与FM测量调变率、调变深度/ 偏移及失真,如进行失真测量时,即可设定解调器显示信号的音频频谱,且使用总谐波失真(THD)测量算法判定所需带宽中出现的总谐波含量。先不论FM偏移测量的贝索零值(Bessel Null)技术,分析频谱分析仪与测量解调器中的固有误差来源后发现,应取得极为准确的调变测量值,否则技术人员也无法找出可提供够低的追溯不确定度的方法或其他实验室,以完整评估潜在的性能。

关键字:射频  微波校准源  测量方法

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/article_2016100817598.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:先进测试平台进行ADSL芯片关键参数测试
下一篇:毫米波线性调频测距实验系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

为了迎接5G元年,Qorvo都准备好了什么?

2019年开年,5G毫无疑问成为了市场焦点,对于射频领域的领头羊Qorvo来说,也将今年定义为5G元年。2016 年,Qorvo就开始作为特邀代表,加入 3GPP 以帮助开发新一代 5G 无线通信标准的主要方面。对于Qorvo来说,公司掌握了所有射频核心技术,从无线基础设施到移动设备,再到更加核心的氮化镓技术,所有这一切都致力于为 5G 发展铺平道路。同时,作为5G标准的参与者,公司也与运营商和标准机构积极合作,让理想变为现实。Qorvo的业务部划分为两部分,分别为基础设施和国防事业部以及移动产品事业部。这两部分都和5G有关,只不过相对于基础设施来说,手机终端市场的占比略高,这是Qorvo非常关心的市场。近日,Qorvo手机事业部
发表于 2019-04-15
为了迎接5G元年,Qorvo都准备好了什么?

埃赋隆半导体高效率750W射频功率晶体管

埃赋隆半导体(Ampleon)今天宣布推出一款高效率750W射频功率晶体管BLF0910H9LS750P。它在915MHz时效率为72.5%,为同类最佳,其坚固耐用型设计也使其成为了工业和专业射频能源应用的理想选择。 该器件的工作频率范围为902MHz至928MHz,适用于工业、科学和医疗系统,以及专业烹饪应用。 该器件的高效率特性,可最大限度地减少其提供给定输出功率所用的能量,从而降低运营成本,并可减少散热,实现更简单、更低成本的冷却解决方案和更紧凑的系统,从而降低制造成本。 BLF0910H9LS750P的坚固耐用型设计,使该器件在所有相位上所能承受的负载失配相当于10:1的VSWR(电压驻波比
发表于 2019-04-08
埃赋隆半导体高效率750W射频功率晶体管

应对复杂测试任务,罗德与施瓦茨公司全新R&S®NRX射频功率计

罗德与施瓦茨公司新型射频功率计R&S®NRX配备了触摸屏,基于向导型的操作理念指导用户进行测试。 R&S®NRX可以配置多达四个测量通道,并提供多种功率探头与之配合, 第一次实现了单台功率计主机可同时支持吸收式功率探头和通过式功率探头。 为了应对现在越来越高精准度射频功率测量的挑战,2019年3月18日,罗德与施瓦茨公司于德国慕尼黑正式推出高精准度射频功率计R&S®NRX,使用户可以直观并方便快捷的完成所需测量任务。 同时,R&S®NRX可以使用多个不同的功率探头执行触发和同步功能完成多通道并行测量任务。 用户可以通过配置的高分辨率5英寸触摸屏或仪表前面板上的按钮来操作仪器,设置
发表于 2019-04-02
应对复杂测试任务,罗德与施瓦茨公司全新R&S®NRX射频功率计

最紧凑射频前端器件将在中芯宁波N1项目基地投产

集微网消息(文/春夏)3月20日,晶圆键合和光刻设备供应商EV集团(EVG)宣布,与中芯集成电路(宁波)有限公司(以下简称“中芯宁波”)合作,开发业界首个砷化镓射频前端模组晶圆级微系统异质集成工艺技术平台。该项目将中芯宁波特有的晶圆级微系统集成技术与EV集团的晶圆键合和光刻系统相结合,可为4G/5G手机提供最紧凑的射频前端芯片组,满足5G市场对于射频前端模组的微型化需求。据中国宁波网报道,目前采用“中芯宁波”晶圆级微系统集成技术的射频前端模组正式发布,成为目前该领域最紧凑的射频前端器件,并计划于今年上半年在北仑小港N1项目基地投产。据推测,该投产项目极有可能是上文EV集团与中芯宁波的合作项目。
发表于 2019-03-27

中芯长电发布超宽频双极化毫米波天线射频芯片集成封装

集微网消息,2019年3月19日,中芯长电半导体有限公司(简称“中芯长电”)欣然发布世界首个超宽频双极化的5G毫米波天线芯片晶圆级集成封装SmartAiPTM(Smart Antenna in Package)工艺技术。SmartAiPTM具有集成度高、散热性好、工艺简练的特点,能够帮助客户实现24GHz到43GHz超宽频信号收发、达到12.5分贝的超高天线增益、以及适合智能手机终端对超薄厚度要求等的优势,并且有进一步实现射频前端模组集成封装的能力。与领先的天线方案提供商硕贝德无线科技股份有限公司合作,利用中芯长电SmartAiPTM工艺,集成了射频芯片的5G毫米波天线模块成功实现了从24GHz到43GHz超宽频信号收发,为克服
发表于 2019-03-20

5G射频将带给封装产业怎样的机会

据麦姆斯咨询报道,5G已经到来,各主要智能手机OEM厂商近期宣布将推出支持5G蜂窝和连接的手机。5G将重新定义射频(RF)前端在网络和调制解调器之间的交互。新的RF频段(如3GPP在R15中所定义的sub-6 GHz和毫米波(mm-wave))给产业界带来了巨大挑战。LTE的发展,尤其是载波聚合技术的应用,导致当今智能手机中的复杂架构。同时,RF电路板和可用天线空间减少带来的密集化趋势,使越来越多的手持设备OEM厂商采用功率放大器模块并应用新技术,如LTE和WiFi之间的天线共享。射频(RF)器件封装技术概览在低频频段,所包含的600 MHz频段将为低频段天线设计和天线调谐器带来新的挑战。随着新的超高频率(N77、N78、N79
发表于 2019-03-18
5G射频将带给封装产业怎样的机会

小广播

更多相关热搜器件

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved