基于AD7793的完整热电偶测量系统

2016-08-26 11:59:52来源: eefocus
电路功能与优势
图1所示电路是一个基于24位Σ-Δ型ADC AD7793 的完整热电偶系统。AD7793是一款适合高精度测量应用的低功耗、低噪声、完整模拟前端,内置PGA、基准电压源、时钟和激励电流,从而大大简化了热电偶系统设计。系统峰峰值噪声约为0.02°C。
 
AD7793的最大功耗仅500 μA,因而适合低功耗应用,例如整个发送器的功耗必须低于4 mA的智能发送器等。AD7793还具有关断选项。在这种模式下,整个ADC及其辅助功能均关断,器件的最大功耗降至1 μA。
 
AD7793提供一种集成式热电偶解决方案,可以直接与热电偶接口。冷结补偿由一个热敏电阻和一个精密电阻提供。该电路只需要这些外部元件来执行冷结测量,以及一些简单的R-C滤波器来满足电磁兼容性(EMC)要求。
 
图1. 带冷结补偿的热电偶测量系统(原理示意图:未显示去耦和所有连接)
 
电路描述
本电路使用T型热电偶。该热电偶由铜和康铜构成,温度测量范围为−200°C至+400°C,产生的温度相关电压典型值为40 μV/°C。
 
热电偶的传递函数不是线性的。在0°C至+60°C的温度范围,其响应非常接近线性。但是,在更宽的温度范围内,必须使用一个线性化程序处理。
 
测试电路不包括线性化功能,因此,本电路的有用测量范围是0°C到+60°C。在该温度范围内,热电偶产生0 mV至2.4 mV的电压。内部1.17 V基准电压用于热电偶转换。因此,AD7793的增益配置为128。
 
AD7793采用单电源供电,热电偶产生的信号必须被偏置到地以上,从而处于该ADC支持的范围。对于128倍的增益,模拟输入端的绝对电压必须在GND + 300 mV至AVDD – 1.1 V范围内。
 
AD7793片上集成的偏置电压发生器偏置热电偶信号,使其共模电压为AVDD/2,确保以相当大的裕量满足输入电压限值要求。
 
热敏电阻在+25°C时的值为1 kΩ,0°C时的典型值为815 Ω,+30°C时的典型值为1040 Ω。假设0°C至30°C的传递函数为线性,则冷结温度与热敏电阻R之间的关系为:
 
冷结温度= 30 × (R – 815)/(1040 – 815)
 
AD7793的1 mA激励电流用于为热敏电阻和2 kΩ精密电阻供电。基准电压利用该2 kΩ外部精密电阻产生。这种架构提供一种比率式配置,激励电流用于为热敏电阻供电,并产生基准电压。因此,激励电流值的偏差不会改变系统的精度。
 
对热敏电阻通道进行采样时,AD7793以1倍的增益工作。对于+30°C的最大冷结温度,热敏电阻上产生的最大电压为1 mA × 1040 Ω = 1.04 V。
 
热敏电阻的选择条件是:热敏电阻上产生的最大电压乘以PGA增益的结果小于或等于精密电阻上产生的电压。
对于ADC_CODE的转换值,相应的热敏电阻值R等于:
 
R = (ADC_CODE – 0x800000) × 2000/223
 
还需要考虑AD7793 IOUT1引脚的输出顺从电压。使用1 mA激励电流时,输出顺从电压等于AVDD – 1.1 V。从上述计算可知,电路满足这一要求,因为IOUT1的最大电压等于精密电阻上的电压加上热敏电阻上的电压,等于2 V + 1.04 V = 3.04 V。
 
AD7793以16.7 Hz的输出数据速率工作。每读取10个热电偶转换结果,就读取1个热敏电阻转换结果。相应的温度等于:
 
温度 = 热电偶温度 + 冷结温度
 
AD7793的转换结果由模拟微控制器ADuC832 处理,所得的温度显示在LCD显示器上。
 
该热电偶设计采用6 V(2节3 V锂电池)电池供电。一个二极管将6 V电压降至适合AD7793和模拟微控制器ADuC832的电平。ADuC832电源与AD7793电源之间有一个RC滤波器,用以降低进入AD7793的电源数字噪声。
 
图2显示了T型热电偶上产生的电压与温度的关系。圆圈内的区域是从0°C到+60°C,该区域内的传递函数接近线性。
 
图2. 热电偶电动势与温度的关系
 
当系统处于室温时,热敏电阻应指示室温的值。热敏电阻指示的是相对于冷结温度的相对温度,即冷结(热敏电阻)与热电偶的温差。因此,在室温时,热电偶应指示0°C。
 
如果将热电偶放在一个冰桶中,热敏电阻仍旧测量环境(冷结)温度。热电偶应指示热敏电阻值的负值,使得总温度等于0。
 
最后,对于16.7 Hz的输出数据速率和128倍的增益,AD7793的均方根噪声等于0.088 μV。峰峰值噪声等于:
6.6 × 均方根噪声 = 6.6 × 0.088 μV = 0.581 μV
 
如果热电偶的灵敏度恰好为40 μV/°C,则热电偶的温度测量分辨率为:
0.581 μV ÷ 40 μV = 0.014°C
 
图3所示为实际的测试板。系统评估如下:分别在室温时以及将热电偶放入冰桶的情况下,测量热敏电阻温度、热电偶温度和分辨率。结果如表1所示。
 
图3. 采用AD7793的热电偶系统
 
 
从表1可知,热电偶报告的温度正确,热敏电阻则有0.3°C的误差。这是未包括线性化处理时的系统精度。如果对热电偶和热敏电阻进行线性化处理,系统精度将会提高,系统将能测量更宽的温度范围。
 
如果每读取10次就计算一次最小与最大温度读数之差,则用温度表示的峰峰值噪声为0.02°C。因此,实际的峰峰值分辨率非常接近期望值。
 
常见变化
AD7793是一款低噪声、低功耗ADC。其它合适的ADC有 AD7792 和 AD7785,这两款器件具有与AD7793相同的特性组合,但AD7792为16位ADC,AD7785为20位ADC。
 
电路评估与测试
测试数据利用图3所示测试板获得。该系统的完整文档位于CN-0206设计支持包中: www.analog.com/CN0206-DesignSupport

关键字:AD7793  热电偶  测量系统

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/article_2016082616946.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
AD7793
热电偶
测量系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved