如何构建仪表放大器

2015-05-21 10:29:20   来源:ednchina   

关键字: 测试测量  仪表  放大器

  仪表放大器是在有噪声的环境下放大小信号的器件。它利用的是差分小信号叠加在较大的共模信号之上的特性,能够去除共模信号,而又同时将差分信号放大。仪表放大器的关键参数是共模抑制比,这个性能可以用来衡量差分增益与共模衰减之比。

  典型的被测信号可以是生物信号,如心电图(ECG)信号或者是来自诸如惠斯登电桥等传感器的微弱信号。由于这些信号源常常具有几千欧姆或更高的输出阻抗,因此仪表放大器需要具有很高的输入阻抗(典型数值在千兆欧姆级)。此外,由于仪表放大器往往要驱动输入阻抗很低的后级电路,如A/D转换器等,因此要求仪表放大器的输出阻抗很低。仪表放大器工作频率通常在直流到1 MHz之间,而在MHz级的速度下,输入电容比输入电阻更为重要,因此这类应用要考虑使用差分放大器。这种差分放大器输入阻抗较低,但速度要快很多。

  常见仪表放大器

  差动放大器

  差动放大器不是仪表放大器,但是有时可以用在仪表放大器的场合。其电路只需一个运算放大器,如图1所示。在对高输入阻抗或者增益没有苛刻要求的场合,使用它是很方便的。 

差动放大器

  该电路的传递函数为:

  Vout=R1/R2(VA-VB)

  这一传递函数是在理想运算放大器和理想电阻器匹配条件下得出的。然而,当电阻不完全匹配时,同相放大电路和反相放大电路的传递函数不相等,就会有共模信号泄露出来。以0.1%的电阻匹配误差为例,最差情况下CMRR为54 dB,即10 V的共模信号会产生20 mV的输出误差。

  差动放大器的优点是结构简单,最主要的缺点是输入阻抗很低。由于增益由R1/R2决定,因此需要在高增益和高输入阻抗间做出折中。此外,将信号分压变小后再进行放大(如同相通路),并不是获得良好噪声性能的方法。对于反相通路而言,加入了额外的电阻,并且反相放大电路的噪声增益总比信号增益高。提高输入阻抗就要求增加电阻的数值,这样将会产生更多的噪声。最后,共模抑制比也受到限制。为了改善这些缺点,第一步是对输入进行缓冲,这样就解决了输入阻抗的问题,如图2所示。 

对输入进行缓冲

  在对输入进行缓冲的同时,如果引入一些增益,除了可以得到高阻抗,还会产生很好的噪声性能,如图3所示。

引入一些增益

 

  电路中差动放大器的噪声仍然存在,但折算到输入端时噪声要除以第一级的增益。由于可以使用阻值非常小的电阻器,因此第一级的噪声可以做得非常低,而且不影响输入阻抗。这种结构的另外一个好处是在高增益时有较宽的带宽。原因是电压反馈放大器具有一定的增益带宽乘积,通过把增益分散到两级放大器,可使每一级的增益比较低,降低差动放大器级的增益,从而不会被增益带宽乘积所限制。然而还有一个没解决的问题就是共模抑制比。图3的电路将共模信号和差分信号都放大了,而所有的共模抑制都在差分放大级实现,因此,很容易超过第一级的输入电压范围。

  三运放仪表放大器

  将图3中第一级放大电路中的接地点去掉来解决共模抑制的问题,从而构成三运放结构仪表放大器,如图4所示。 

三运放结构仪表放大器

  第一级电路让共模信号有效地通过,没有任何放大或衰减,第二级差动放大器将共模信号去除。由于额外提升了差分增益,虽然电阻器的匹配状况并没有改善,但是系统的有效共模抑制能力却得到了增强。在实际应用中需要注意:

  1)必须在第一级提供增益;

  2)系统的共模抑制不是由前两个放大器的共模抑制比性能决定的,而是取决于两个共模抑制的匹配程度。然而双运算放大器从来不会给出这一指标,因此选择时必须要求CMRR性能指标比需要的目标性能指标至少好6 dB;

  3)如果电阻器有某些对地的泄露通路,CMRR指标就会降低;

  4)仪表放大器前面的元件要尽可能设计得平衡。如果仪表放大器同相通路中低通滤波器和反相通路中低通滤波器具有不同截止频率,系统的CMRR特性将会随着频率的升高而降低。

[1] [2]
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

推荐阅读

编辑:什么鱼
本文引用地址: http://www.eeworld.com.cn/Test_and_measurement/2015/0521/article_11845.html
[发表评论]
[加入收藏]
[打印本页]
[关闭窗口]
[返回顶部]
[RSS订阅]
小广播
每日新闻
最热点击
本周热门资源推荐
EEWORLD独家
论坛精华
精选博文