电磁流量计可在工业应用中实现高精度

2015-04-20 10:16:57   来源:eechina   

关键字: 电磁流量计  工业应用  高精度

简介

从炼油厂到自动售货机等工业应用要求具有精确的温度、压力 和流量测量,以控制复杂以及简单过程。例如,在食品行业,产品装瓶和装罐的流量精确控制会直接影响利润,因此必须最大程度降低流量测量误差。类似地,封闭运输应用——比如石油工业中油罐和油罐车之间的原油和成品油交换——需要高精度测量。本文提供流量计技术概述,重点讨论液体流量测量中精度最高之一的电磁流量计。

图 1 显示采用流量计和执行器控制液体流速的基本过程控制系统。在最低的水平处,诸如温度、流速和气体浓度等过程变量通过输入模块监控,该模块通常是可编程逻辑控制器(PLC)的一部分。这些信息由比例-积分-微分(PID)环路在内部处理。PLC利用这些信息来设置输出,控制稳态过程。过程数据、诊 断和其他信息可向上传递至操作层,而命令、参数和校准数据可向下传递至传感器和执行器。

1.jpg 
图 1. 测量和控制液体流速的基本系统

采用多种不同技术测量流速,包括差压、科氏力、超声和电磁等。最常用的是差压流量计,但它们对系统中的压力变化较为敏感。科氏流量计具有最高的精度(高达 0.1%),但它们体积较大且成本高昂。超声流量计通常体积较小、成本较低,但精度有限(典型值为 0.5%)。超声流量计采用无创测量技术, 提升可靠性的同时最大程度减少了随时间变化的检测要素的影响,但无法用于脏水或遭到污染的液体。

电磁流量计也能提供无创检测。这些设备可用于酸性、碱性和离子液体——这些液体的电导率范围为 10 S/m至 10–6 S/m,并且可以是干净、肮脏、腐蚀性、侵蚀性或粘性的液体或浆体,但不适用于碳氢化合物或气体流量测量。它们能够针对直径小至大约 0.125 英寸、最大容量为 10 立方英尺的低流速和高流速提供相对较高的系统精度(0.2%),并且哪怕在更低的流速下也能保持读数的可重复性。它们可以测量双向流量,即上游或下游。表 1 比较了几种常见的流量计技术。

表 1. 工业流量计技术
 

电磁

差压

超声

科氏

测量技术

法拉第电磁感应定律

差分:基于容性或基于电桥

传感器互相关、时间-数字、多普勒

差分相位

平均精度

0.2%–1%

0.5%–2%

0.3%–2%

0.10%

平均成本

300–1000  美元

300–1000  美元

300–1000  美元

3000–10000  美元

优点

无活动零件

无活动零件

无活动零件

多功能,可用于几乎全部液体/气体

 

 

 

 

适合腐蚀性液体使用

多功能,可用于液体/ 气体

多功能,可适应后向安装

独立于压力和温度

 

 

 

 

双向流量测量

 

 

 


电磁流量计采用法拉第电磁感应定律,该定律指出,在磁场中移动的导体将会产生感应电压。液体可看作导体;磁场由流管外的通电线圈产生。感应电压幅度直接与导体的运动速度和导体类型、流管直径以及磁场强度成正比,如图 2 所示。

法拉第定律在数学上可以表示为:E = kBLV

其中,V表示导电流体的运动速度;B表示磁场强度;L表示拾取电极之间的间距;E表示电极两端测得的电压;k为常数。B、L和k可以是固定值,也可以进行校准,从而等式简化为:E ∝ V。

2.jpg 
图 2. 电磁流量计

流过励磁线圈的电流产生受控磁场。专用励磁波形是电磁流量计的一个重要方面,在实际应用中会使用多种类型,包括低频矩形波、电力线频率正弦波、双频波和可编程脉冲宽度。表2 显示各种传感器线圈的励磁波形。

表 2. 传感器励磁类型、波形和特性 
t2.jpg 

大部分应用采用低频直流矩形波励磁 ⁄25、 ⁄16、 ⁄10、 ⁄8、 ⁄4 或⁄2 电力线频率(50 Hz/60 Hz)的传感器线圈。低频励磁具有恒定的幅度和方向交替变化的电流,实现低频零漂移性能。电流方向采用晶体管或场效应管H电桥进行切换。若SW1 和SW4 导通,而SW2 和SW3 关闭(图 3a),则传感器线圈处于正相位励磁期间;同时,恒定电流进入EXC+并流出EXC– 。若SW1和SW4 关闭,而SW2 和SW3 导通(图 3b),则传感器线圈处于负相位励磁期间;同时,恒定电流进入EXC–并流出EXC+。

3.jpg 
图 3. H 电桥控制传感器线圈励磁相位

电磁流量计的励磁电流相比其他流量测量技术而言非常大,其范围为 125 mA至 250 mA,覆盖线路供电式流量计的主要范围。高达 500 mA或 1 A的电流将用于直径更大的管道。图 4所示电路可以产生精密 250 mA传感器线圈励磁。8 ppm/°C基准电压源ADR3412 提供实现电流偏置的 1.2 V设定点。

4.jpg 
图 4. 线性调节吸电流

虽然这种传统的电流励磁方法采用基准电压源、放大器和晶体管电路提供良好的低噪声性能,但该方法由于经过功率晶体管的电流和其两端的电压降都很大,因此功率损失极大。该方法需要使用散热器,从而增加了系统成本和尺寸。具有开关模式电源的恒流源正成为更流行的传感器线圈励磁方法。图 5 显示同步降压DC-DC调节器 ADP2441 配置为恒流源输出。这项技术可以消除使用线性电流源的功率损失,并可极大地改善 系统性能。

5.jpg 
图 5. 开关模式恒定电流励磁电路

功率更高的系统采用电流检测诊断功能监测随负载、电源、时间和温度变化的电流改变,同时还能检测传感器线圈开路。分流放大器 AD8219 可用来监测 80 V共模电压范围内 60 V/V增益和 0.3%精度的励磁电流。隔离式电流放大器采用隔离式Σ-∆调制器 AD7400A 以及轨到轨运算放大器AD8646,如图 6 所示。AD7400 的输出通过四阶低通滤波器处理,以便重构检测输出。
[1] [2] [3]
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

推荐阅读

编辑:什么鱼
本文引用地址: http://www.eeworld.com.cn/Test_and_measurement/2015/0420/article_11453.html
[发表评论]
[加入收藏]
[打印本页]
[关闭窗口]
[返回顶部]
[RSS订阅]
小广播
每日新闻
最热点击
本周热门资源推荐
EEWORLD独家
论坛精华
精选博文