基于LabVIEW的三极管寿命测试系统

2015-03-10 09:58:24   来源:eefocus   

关键字: LabVIEW  三极管  晶体管  老化测试系统  数据精度

随着航空,航天,能源工业等领域对电子产品质量的要求日益提高,电子产品的可靠性问题受到越来越广泛的重视。电子产品在使用过程中会遇到不同环境条件,在热胀冷缩的应力作用下,热匹配性能力差的电子元器件就容易失效,导致电子产品故障,造成巨大的人力和财力损失。电子元器件的老化测试就是仿照或者等效产品的使用状态,通过测试,将不符合器件剔除,将电子产品的质量在加工初期进行有效地控制,以保证电子产品使用的可靠性和稳定性。


针对电子元器件的这种情况,我们开发了一种老化测试系统,可以主要针对功率器件(功率三极管、VDMOS,IGBT等),通过有规律给元器件通电和断电,循环施加电应力和热应力,检验其承受循环应力的能力。

1工作原理

通过给晶体管通电加热,使晶体管在当前恒定功率下工作,通过一段时间后,晶体管因为发热而使得器件的结温持续升高,到达设定值后,断开恒流源和恒压源,给器件通

风,使其温度降低到设定值,反复这个过程,就可以较为准确的算出该器件的加热时间和冷却时间,达到了间歇测试的目的。基本的工作原理图如1所示。



图1 间歇寿命测试循环示意图


半导体器件的热阻通常定义为:

其中RθJX=器件结点到具体环境的热阻(替代符号是θJX)[℃/W];

TJ=稳定状态测试条件下的器件结温[℃];

TX=环境的参考温度[℃];

PH=设备功耗[W];

测试条件下器件结温可表示为:

Tj=TJ0+△TJ

其中TJ0=器件加热前的初始结温[℃];

△TJ=器件结温变化量

通过温度敏感参数(TSP)来表示结温变化量,公式为:

△TJ=K×△TSP

其中△TSP=温度敏感参数的变化量[mV];

K=定义TJ和TSP变化关系的常量[℃/mV];

温度敏感参数可表示为:

TSP=Ie×-4Vce

其中Ie=冷却测量时刻加的恒流源值[mV];

Vce=器件的结电压值[mV];

K系数为结温随结电压的变化关系,固定器K件系数为常量,不同器件K的系数不同,可在试验器件的资料中查出,或者厂家给出。其计算公式可表示为:

其中TJ1和TJ2为两个时刻的结温,Vce1和Vce2为结温对应的结电压。

 

2系统架构

系统采用PC机+sbRIO-9612+主控板+驱动板+老化板的结构,如图2所示,PC和9612之间通过网口通信,9612与主控板之间通过数字I/O口通信,sbRIO-9612,主控板,驱动板供电都是由开关稳压电源完成,程控电源为老化板上的器件提供工作电源,16路差分AD用于采集老化板上待测器件的电流,电压以及电源温度等信号。系统使用sbRIO-9612加扩展板构成下位机,作为系统的主控板;主控板与驱动板采用总线通讯,驱动板主要功能是将主控板进来的20对差分信号转换后(硬件实现)给驱动板FPGA,用20路信号与sbRIO-9612实现通信,sbRIO-9612通过控制FPGA中的寄存器来实现电源、恒流源、漏/源的通断,从而建立功率循环及合适的采样条件,硬件示意图如3所示。



图2 系统总体架构图

图3 FPGA硬件示意图


驱动板和老化板分别采用两个对接座连接,电流电压采样信号回传到sbRIO-9612板上进行AD变换后发送到上位机。

3工作流程及实现

3.1 LabVIEW简介

LabVIEW是一个程序开发环境。它使用图形化编程语言G在流程图中创建源程序,LabVIEW FPGA模块将LabVIEW图形化开发平台扩展到基于NI可重配置I/O(RIO)架构的硬件平台上的现场可编程门阵列(FPGA)。

[1] [2] [3]
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
编辑:什么鱼
本文引用地址: http://www.eeworld.com.cn/Test_and_measurement/2015/0310/article_10967.html
[发表评论]
[加入收藏]
[打印本页]
[关闭窗口]
[返回顶部]
[RSS订阅]
小广播
每日新闻
最热点击
本周热门资源推荐
EEWORLD独家
论坛精华
精选博文