LTE系统核心技术剖析及eNodeB测试方案探讨

2014-12-29 10:13:02来源: eccn
1 引言

UMTS (Universal Mobile Telecommunications System) 系统的广泛应用满足了用户对数据业务的需求,有效提高了通话质量和数据速率。然而,宽带接入技术的出现及普及,Wi-Fi,WiMAX系统高数据速率的优势,对UMTS系统带来很大的冲击。这使得UMTS系统数据速率不高、时延较长、网络结构复杂等不足愈加明显。因此,3GPP(3rd Generation Partnership Project)提出的UMTS的长期演进计划(LTE),通过提供一个以高速率和低时延为特征的分组优化系统来保证UMTS在未来10年的竞争力和领先性。

为实现此目标,LTE系统相对于UMTS系统引进了多项关键新技术,这使得LTE系统在物理层技术,网络结构及协议架构等方面都发生了相应的改进,并且核心网也需要相应的升级来支持LTE系统。因此,LTE系统不仅是对UMTS系统的演进。LTE系统中eNodeB设备的测试工作也具有更高的挑战。测试作为移动通信产业链中重要的一环,位于产业链的上游,是整个无线通信系统正常工作与维护的根本保证。因此,对eNodeB设备的测试方法及测试用例的研究势在必行。

2  LTE系统的核心新技术

LTE是3GPP为适应时代需求而提出的新的移动宽带接入标准,为此3GPP规定了LTE系统的各项技术指标并引入了多项核心新技术。

LTE系统的主要技术指标与HSPA系统的对比参见表1。

表1  LTE系统的主要技术指标



为了达到高数据速率和高频谱利用率,LTE系统在上下行分别利用了SC-FDMA和OFDM调制技术。它们将整个系统带宽分裂为大量子载波,并支持多种调制方式如QPSK,16QAM及64QAM。LTE系统同时指定了MIMO技术的不同模式,适应于不同的信噪比条件。LTE工作频率从700MHz到3GHz,信道带宽从1.5MHz到20MHz,为网络运营商提供了灵活的频带配置方式。LTE系统引入的核心新技术总结如下:

2.1  OFDM/OFDMA

LTE中传输技术采用OFDM调制技术,其原理是将高速数据流通过串并变换,分配到传输速率较低的若干个相互正交的子信道中进行并行传输。由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展产生的时间弥散性对系统造成的影响。在OFDM符号之间插入保护间隔,使保护间隔大于无线信道的最大时延扩展,从而最大限度地消除由多径引起的符号间干扰(ISI)。在LTE系统中采用循环前缀CP (Cyclic Prefix)作为保护间隔,CP的长度决定了OFDM系统的抗多径能力和覆盖能力。长CP利于克服多径干扰,支持大范围覆盖,但系统开销会相应增加,导致数据传输能力下降。3GPP定义了长短两套循环前缀方案,根据具体的使用场景进行选择;短CP方案为基本项,长CP方案用于支持LTE系统中大范围覆盖和多小区广播业务。

LTE规定了下行采用OFDMA,上行采用SC-FDMA的多址方案,这保证了使用不同频谱资源用户间的正交性。OFDMA中一个传输符号包括并行传输的M个正交的子载波,而在SC-FDMA机制中M个正交子载波以串行方式进行传输,降低了信号较大的幅度波动,降低了峰功比。 此外,为了保证上行多用户之间的正交性,要求各用户的上行信号在CP长度的误差范围之内同时到达eNodeB,因此eNodeB需要根据用户远近位置来调整各用户的发射时间。

LTE系统对OFDM子载波的调度方式也更加灵活,具有集中式和分布式两种,并灵活地在这两种方式间相互转化。上行除了采用这种调度机制之外,还可以采用竞争(Contention)机制。

2.2  MIMO

MIMO技术是提高系统速率的主要手段,LTE系统分别支持适应于宏小区、微小区、热点等各种环境的MIMO技术。 基本的MIMO模型是下行2×2,上行1×2天线阵列,LTE发展后期会支持4×4的天线配置。目前,下行MIMO模式包括波束成行,发射分集和空间复用,这3种模式适用于不同的信噪比条件并可以相互转化。波束成型和发射分集适用于信噪比条件不高的场景中,用于小区边缘用户有利于提高小区的覆盖范围;空间复用模式适用于信噪比较高的场景中,用于提高用户的峰值速率。在空间复用模式中同时发射的码流数量最大可达4;空间复用模式还包括SU-MIMO(单用户)和MU-MIMO(多用户),两种模式之间的切换由eNodeB决定。上行MIMO模式中根据是否需要eNodeB的反馈信息,分别设置开环或闭环的传输模式。

2.3  E-MBMS

3GPP提出的广播组播业务不仅实现了网络资源的共享,还提高了空中接口资源的利用率。LTE系统的增强型广播组播业务E-MBMS(Enhanced Multimedia Broadcast/Multicast Service)不仅实现了纯文本低速率的消息类组播和广播,更重要的是实现了高速多媒体业务的组播和广播。为此,对UTRA做出了相应的改动:增加了广播组播业务中心网元(BM-SC),主要负责建立、控制核心网中的MBMS的传输承载,MBMS传输的调度和传送,向终端设备提供业务通知;定义了相关逻辑信道用于支持E-MBMS。

从业务模式上,MBMS定义了两种模式,即广播模式和组播模式。这两种模式在业务需求上不同,导致其业务建立的流程也不同。

从操作方式上,单频网(SFN,Same Frequency Network)和非单频网操作共存于同一小区,其中单频网操作将支持多小区传送;非单频网操作只支持单小区传送。

在网络规划上,3GPP定义了两种网络部署:一种是LTE E-MBMS与LTE 单播系统共用载波;另一种部署方式是LTE E-MBMS 采用专用下行载波。专用载波方式将以5MHz带宽为基本项,也将支持其他带宽的专用载波的能力,但不能支持多种带宽共存的模式。在广播模式下,5MHz的带宽至少支持16个频道,每频道达300kbit/s的速率,小区边缘的频谱效率为1bit/s/Hz。

2.4  网络结构及协议

LTE系统的网络结构与UTRAN相比,去掉了RNC,而只由若干个eNodeB组成,简化网络并减少时延。多个eNodeB通过X2接口相互连接,eNodeB通过S1接口连接到演进型分组核心EPC(Evolved Pocket Core)。具体来讲, S1-MME接口连接到移动性管理实体MME(Mobile Management Entity),S1-U接口连接到SAE网关,其中S1接口支持eNodeB和MME/SAE网关之间多对多链接(见图1)。eNodeB的功能在原有NodeB功能的基础上,增加了RNC物理层,MAC层,RRC,调度,接入控制,承载控制,移动性管理和inter-cell RRM等功能。



图1  LTE系统的网络结构

LTE系统的协议栈结构与URTAN同样分为用户面(PDCP/RLC/MAC/ PHY)和控制面(RRC)协议。层2包括媒体接入控制协议(MAC)、无线链路控制协议(RLC),以及分组数据汇聚协议(PDCP);层3包括无线资源控制协议 (RRC)。空中接口的层1和层2协议在用户设备和eNodeB中终止;控制平面中的层3协议也在用户设备和eNodeB中终止;控制平面的非接入层(NAS)协议在用户设备和核心网的移动管理实体(MME)中终止(见图2)。



图2  LTE系统协议栈结构

LTE系统中的无线资源控制(RRC)状态相比于UTRA系统也简化了许多,只包含RRC_IDLE,RRC_ACTIVE和RRC_DETACHED 3种。在aGW网元中,UE的上下文必须区分这3种状态,而在E-Node B中合并了原先的多种状态只保留RRC_ACTIVE状态的UE上下文。

2.5  其他

为了提高小区容量及边缘的传输速率,LTE系统提出了小区间干扰协调机制,并设计了静态干扰协调以及动态干扰协调技术。在功率控制机制上,设定小区边缘用户的目标SINR(信噪比)低于小区中心的目标SINR,进一步减少对相邻小区边缘用户干扰,从而获得更大的系统容量。

为了实现低时延的目标,LTE系统大的小区搜索过程和随机接入过程做了相应的简化,并提供了更加灵活的形式。

为了实现与现有3GPP和非3GPP的兼容,LTE系统采用快速小区选择(即快速硬切换)方法实现不同频段之间各系统间的切换,实现更好的地域覆盖和无缝切换;此外,核心网的设计也发生了相应的改变,增加了SAE和3GPP模块,实现了LTE系统与3GPP和非3GPP系统的兼容。

LTE系统提出了上下行多种不同的参考信号RS (Reference signal),不同的参考信号在子帧中有不同的位置和配置,实现不同的导频功能,以及不同模式下的信道质量测量。

综上所述,LTE系统相比于UTRA系统引进了多项核心新技术,发生了根本性的变革,因此对LTE系统中eNodeB设备的测试也将面临着很多新的挑战。在测试用例方面,将增加很多新的用例用于覆盖并验证LTE系统中新的技术及配置;相应地,测试方法也将发生新的变化。

3  LTE系统中eNodeB测试关注点

LTE系统独特的特点及技术优势实现了LTE系统的高速率、低时延和最优分组的需求。然而为了保证LTE系统中eNodeB设备真正具有这些新功能及技术指标,并实现测试有效性的提高,我们对eNodeB关键技术点的测试势在必行。我们对eNodeB测试的关注点主要在于:

(1)LTE系统中子载波之间的正交性是高速率性能得以实现的前提,也是接收端正确接收的根本保证。因此,LTE系统中必须要保证OFDM子载波之间的正交性以及上行各用户所占用子载波之间的正交性,这也将是eNodeB的测试重点之一。
[1] [2] [3]

关键字:LTE  eNodeB  EVM  MIMO

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2014/1229/article_10474.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
LTE
eNodeB
EVM
MIMO

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved