利用DSP实现多路测量信号扩频传输系统

2014-12-03 10:26:29来源: eccn

1. 引言  

在测控领域,通常要求对多测量测信号进行传输。信号的传输过程中常受到周围复杂环境的干扰会产生较大的失真。如采用扩频通信传输系统,在发射机中用伪随机序列对所传输信号的频谱进行扩展并利用码分复用实现多路信号的复用;在接收机中再对其解扩,恢复原传输信号。利用扩频通信的扩频增益,可大大提高通信系统的信噪比,增加传输信号的可靠性改善通信质量、提高通信效率。同时DSP具有可满足算法控制复杂结构、运算速度高、寻址方式灵活和通信性能强大等需求,可以通过软件修改传输信号参数,因此具有很大的灵活性。本文利用DSP系统实现多路测量信号扩频传输,结合了扩频通信和DSP的优点 ,是一种有发展前途的检测信号传输实现方式。  

2. 多路检测信号的扩频传输系统

系统的组成按照功能划分为发射模块和接收模块。在发射模块中,多路基带数字信号(模拟信号则先通过模数转换)分别由各自对应的伪随机序列进行扩频调制,这些伪随机序列各不相同但相互正交(或准正交),用这些序列进行扩频调制同时利用码分复用技术把多路信号复合成一路信号送主调制器进行载波调制后,再发射出去。在接收模块中,先对接收到的信号进行载波解调,然后再用本地的与每一路已同步好的伪随机序列进行相关解扩,因为各路信号对应的伪随机序列互不相关,因而可恢复出每一路原始的基带信号,这里的信号是指数字信号,若需要模拟信号,则可把数字信号转换成模拟信号。本系统对接收模块的伪随机序列的同步采用常用的滑动相关捕获来实现。多路测量信号扩频传输系统的组成原理图如图1所示。扩频传输系统中,扩频信号带宽B2与信息带宽B1之比称为处理增益GP,即

 

在扩频通信中,接收机作扩频解调后,只提取扩频序列相关处理后的带宽 B 1的信号成分,而排除掉扩展到宽频带B2中的外部干扰、噪声和其它用户通信的影响,所以扩频处理增益GP能够准确反映扩频通信的抗干扰的能力。  

扩频序列的码长N越大,码元宽度TC越小,则码速Rc越大,扩频通信系统的扩频增益也越大。  

扩频处理增益越高,系统的抗干扰能力越强。以周期为127的Gold序列为扩频序列的一路信号的传输过程为例,数据的发送频率为 19200,扩频序列的频率为19200×127,误码率是未扩频传输的0.04417,数据接收时的误码率降低近两个数量级。  

本系统采用的Gold扩频序列的周期为127,其码分多址的可以实现12路的检测信号的同时同频的扩频传输。多路检测信号的扩频传输可以保证在接收端的低误码率要求下实现可靠传输。 

3. 多路检测信号扩频传输  

DSP实现的系统结构多路测量信号扩频传输系统主要实现多路测量信号(包括模拟信号和数字信号,模拟信号可先经A/D转换成数字信号,数字信号存储在系统的存储器中,然后再进行扩频传输)的扩频调制、同步、扩频解调等功能,同时便于以后对其扩展以完成其他功能。由于这是一个DSP硬件平台的设计,所以保证了以后功能扩展的实现中尽量不改变硬件的设计或者对硬件设计改变很小,且只需要添加部分软件或者对软件进行修改就可以达到其功能扩展升级,所以尽量减少专用芯片的使用而采用具有扩展性的芯片。整个系统的总体设计框图如图2所示。

 

在总体设计中,采用定点DSP实现多路测量信号的扩频调制、解扩,用FPGA来实现扩频信号的同步。整个系统平台包括数字信号处理器 (DSP)内核、 FPGA、存储器、A/D转换、JTAG接口等。根据现有的实际情况,数字信号处理器 (DSP)采用TI(德州仪器)公司的 TMS320C5416[6],FPGA芯片选用 ALTERA公司的 EP1K100QC208-3,FLSAH存储器使用AMD公司的 AM29LV200,A/D转换使用 TI公司的开关电容结构的逐次比较型 8位 A/D转换器TLC540。JTAG为仿真接口连接。

4. DSP系统软件设计

作为整个系统的控制和处理核心,DSP要完成大量的工作,总结起来主要有下面几项:  

1.对其自身的初始化;  

2.载入扩频码序列并存放于片内RAM里,以及接收时根据FPGA的同步信号完成扩频序列的同步;  

3.接收 A/D转换送来的数据,并存放在预先开辟的数据区间;  

4.对接收到的多路数据分别进行扩频调制,并将调制后的数据也存放在开辟好的数据存储区间;  

一 对经过扩频调制后的多路数据合成一路数据并进行数字调制;  

一 对接收到的扩频信号进行扩频解调,恢复出原始的多路信号并送入数据存储区间。  

本系统所有的DSP软件设计都是在 CCS2.0集成开发环境下进行的,采用基于TI公司C5000系列DSP的汇编语言和C语言混合编写的。其发射模块和接收模块的软件流程分别如图3(a)和(b)所示:

本系统采用对每路测量信号分别做扩频调制的同时利用扩频码码分复用后再进行传输的方法,不需经过频分复用或时分复用后再做扩频调制进行传输,这使得系统更简化,在提高信号传输可靠性的同时也可提高系统的频带利用率。电路设计中主要涉及到了扩频信号的基带处理。如果要实现信号的无线扩频传输。则可以在设计的基础上,加入射频调制模块,基带信号经过调制后转换为射频信号发射出去,接收到的射频信号经射频解调后,再进行解扩处理即可。  

5.结束语  

在多路测量信号的扩频传输系统中,利用不同伪随机码调制不同信号,实现信号的复用和扩频传输。在接收端实现系统同步后,先解调再利用相干检测法解扩,恢复出原信号实现多路信号。该扩频通信系统可实现多路信号的有效传输,具有抗干扰能力强、易保密等优点。本系统利用 DSP系统实现多路测量信号扩频传输,充分利用了DSP器件的优点和扩频通信系统的特性,是一种有发展前途的检测信号传输实现方式。  

本文创新点在于对多路测量信号的传输系统研究的基础上,提出了对所传输信号的频谱进行扩展的同时利用码分复用实现多路信号复用传输的方法。并利用DSP实现了多路检测信号扩频传输系统,实验结果证明该系统是可行的。

关键字:DSP  多路测量信号  扩频传输系统

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2014/1203/article_10233.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
DSP
多路测量信号
扩频传输系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved