实现电压非接触稳定测量

2014-12-02 09:55:24来源: 实现电压非接触稳定测量

在复合材料特性检测、电路电气特性检测、人体心电检测、核磁共振等方面需要对物体表面电压进行精确测量。传统上电压的检测都需要与物体直接接触,通过传导电流来完成。该种电压测量方法无法测量空中电压的变化,即使测量物体表面电压,这种接触测量方式也有许多缺点。例如,接触测量心电信号时,电极需要利用导电膏与皮肤直接接触,容易引起皮肤过敏,造成皮肤不适;接触测量电路时延特性时,由于测量电路的接人,改变了原有电路的传输特性,从而改变了时延,使测量不准确。接触测量物体表面的电压不仅操作麻烦而且有一定的危险性。为了克服接触电压测量的这些缺点,满足对物体表面电压非接触测量的需要,文中设计了一种新型便携式电压检测系统。该系统基于电容耦合原理,前端前置电路通过运用保护、自举、有源屏蔽等反馈技术,有效地提高了其输入阻抗,从而使该系统对物体表面电压测量时相当于一个理想的电压表,不需要与物体表面直接电气接触,利用位移电流即可完成电压的有效测量。


1非接触电压测量原理

非接触电压测量的原理类似于磁力仪测量磁场,不需要直接电气连接,通过电容耦合,利用位移电流来测量物体表面或自由空间的电压。将传感器电极放在电场中,感应电极与信号源之间将形成耦合电容,通过耦合电容信号源经过测量系统与地之间将构成一个分压电路,如图1所示。



图1非接触电压铡量原理图


设信号源的电压为Vs由分压公式可得,在运放输入端的电压可表示为:

如果传感器前置放大电路的放大倍数为Av,输入电阻和输入电容分别为Rin和Cin则传感器的输出可表示为:

由式(2)可知,当耦合阻抗与系统输入阻抗相比可忽略不计时,系统相当于一个具有理想特性的电压计,可有效测量电压信号。因此,为了提高系统的灵敏度,在系统设计过程中,应该采用反馈等技术提高系统前端传感器的输入电阻,降低输入电容。通过测量空中两点电压的大小,根据电压与电场的关系,可以推导出空中电场的情况。

2系统设计

系统采用低功耗的MSP430F5529单片机作为控制器,通过敏感电极将信号以位移电流的形式采集到系统,然后进入前置放大电路,经过放大处理后输出给模数转换电路,模数电路将转换后的信号通过蓝牙无线传输给上位机进行显示。因为系统输入阻抗的大小直接关系到灵敏度,因此,在整个系统设计中,敏感电极和前置放大电路的设计是关键和难点,系统的结构框图如图2所示。



图2非接触电压测量原理图


2.1敏感电极

该敏感电极由感应层,有源屏蔽层和接地屏蔽层三层结构构成,通过三同轴电缆与后面前置放大电路连接。感应层和有源屏蔽层由直径为3.5 cm的标准双面印刷电路板构成。电路板的一面被覆铜作为感应层,感应层外围的一圈覆铜与印刷电路板的背面相连构成有源屏蔽层,最外层的金属壳作为接地屏蔽层。整个电极的直径为3.7 cm,厚度为0.5 cm.电极的结构如图3所示。



圈3电极结构圈



2.2前置放大电路

为了提高系统输入阻抗,有效测量空间或者物体表面微弱电压信号,在前置放大电路设计过程中采用了保护、自举、有源驱动屏蔽和接地屏蔽技等技术,结构原理图如图4所示。前置放大电路通过三同轴电缆从前端敏感电极获得感应信号,经过放大后输出给后面的信号处理电路。电路设计以高性能的静电型运算放大器AD549(图中A1)为核心,该运放具有超高的输入阻抗、极低的输入电容和低的输入噪声,完全满足非接触电压测量的需要。前置放大电路工作需要稳定的直流工作点,偏置电路能够为运放提供稳定的直流工作点,但偏置电路的引入也降低了系统的输入电阻,因此需要利用反馈技术在不显著降低输入阻抗的条件下为前置放大电路设计偏置电路。设计中考虑到R1和R2对偏置电路阻抗和噪声的影响,经过折中考虑,采用2个阻值为100 MΩ的电阻通过正反馈构成自举结构来形成偏置电路,如前置放大电路原理图所示。偏置电路的等效输入阻抗可用下面公式表示:

从式(3)可知自举结构的运用极大的提高了传感器的等效输入阻抗。为了减小传输线上的等效寄生电容,提高了输入阻抗,并减少了信号传输损耗。为减小运算放大器输入电容,在前置放大电路设计过程中采用了电容抵消技术,如原理图所示,电容Cf和电位器Rp构成输入电容抵消结构,该结构的运用使得运放的等效输入电容降低为:

式中μ是电位器的正反馈系数。

从式(4)可以看出,经过精确调节,选择合适参数,输入电容抵消结构能够有效降低运放的等效输入电容,增大系统输入阻抗。高性能运算放大器和新型反馈技术的运用使系统具有极高的输入阻抗,能够有效的耦合空间微弱电压信号。

[1] [2]

关键字:电容耦合  高阻抗  非接触  电压测量

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2014/1202/article_10210.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电容耦合
高阻抗
非接触
电压测量

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved