基于超声导波的结构健康状态无损检测及在线监测

2014-09-02 09:17:51来源: eefocus

应用领域:

基于超声导波的结构材料损伤快速无损检测及损伤在线监测应用。

挑战:

目前广泛应用的超声波检测技术大多基于超声体波,由于超声体波的传播特点,需要对结构进行逐点检测,因此存在检测效率低,成本高等缺点;同时逐点扫描的检测方式也限制了其在结构健康监测领域的应用。

超声导波是体波在结构界面反射叠加形成的沿结构界面传播的应力波。超声导波相对于体波具有衰减小,传播距离长的特点,可实现对形状规则的大结构件的快速无损检测;并且具有在线应用潜力,可作为结构健康在线监测的技术手段。

但是超声导波相对于体波更加复杂,主要表现为两方面:一方面为导波的多模态特性,即同一频率下同时存在有多种导波模态;另一方面为频散特性,即同一模态导波在不同频率下的传播速度不同。超声导波的复杂性对检测平台和检测方法提出了更高的要求。

解决方案:

超声导波检测方法为主动检测,包括信号的激发的和接收。针对导波的多模态的特性,拟采用单一模态导波作为检测信号,因此需要在检测平台从信号激发和接收两方面抑制其他模态。主要通过传感器尺寸,信号激发频率,优化匹配实现单一导波模态激发。

为了实现对被检对象的快速检测,根据雷达原理发展了适用于超声导波的相控阵列及信号处理算法,以此实现对材料损伤的快速成像检测。

1 应用背景

随着当前对大型设备结构安全性的日益关注,无损检测技术已成为现代结构设备制造和使用过程中必不可少的检测手段之一, 广泛应用于各个领域,如航空航天领域、电力生产领域、石化输运加工领域等。这些领域的设备结构通常处于较恶劣的工作条件,容易发生磨损、腐蚀、疲劳、蠕变等损伤,进而造成结构内部产生缺陷,危害结构安全性。因此对这些设备结构进行实时监测和诊断成为无损检测技术应用中的一个重要方面。

目前工业界常用的五大无损检测方式包括:渗透检测,磁粉检测,涡流检测,超声波检测,射线检测。在这五种检测方式中,超声波检测由于适用范围广(既可检测金属,也可检测非金属),对人体无害而应用较为普遍。目前常规的超声波检测主要使用体波,只能检测探头覆盖区域或者探头周围很小范围,因此通常采用逐点检测的方法。逐点检测方法的缺点就是检测效率低,检测成本高。而使用超声导波的无损检测技术则可以有效地解决这一问题。

超声导波是目前常规应用超声体波的叠加组合。在无限均匀各向同性弹性介质中, 只存在两种超声波:纵波和横波,这两种超声波称为超声体波, 二者分别以各自的特征速度传播而无波型耦合。 在有限尺寸波导(如平板、圆管) 中传播的纵波和横波由于受到边界的制约以及在边界处发生不断的模态转换,将会产生沿波导传播的超声导波。因此超声导波是由超声体波(包括纵波和横波)在波导上下界面间反射叠加而形成的沿波导传播的一种应力波。

由于超声导波是在具有上下界面的固体中传播的应力波,其衰减主要是由材料吸收造成的,因此与传播距离成正比。而超声体波在固体材料是从激发点向三个方向扩散,其衰减与传播距离的平方成正比。因此超声导波的衰减相对体波来说小很多,可以沿波导传播很长距离。

基于超声导波传播距离长的特点,其在无损检测应用中可以实现一次检测数米距离,是对传统逐点扫描方式的极大改进。同时,对于发电领域和石化领域常见的包覆及埋地结构,利用超声导波检测技术只需要一点接入就可以检测数米距离,不需要完全暴露结构,可以极大的提高效率并降低成本。

由于超声导波检测距离长、范围广,具有在线应用潜力,可以作为结构健康状态检测(SHM)的技术手段。

2 面临问题

由于超声导波是超声体波在波导中的反射和叠加,因此超声导波相对体波来说更加复杂,表现为多模态和频散特性。

对于表面处于自由边界条件下的各相同性板状构件,其频散关系可表达为:

 

频散关系表达式

频散关系表达式       频散关系表达式                                                                 (1)

其中,h是平板半壁厚,ω角频率,k是波数,VLVS分别是材料中纵波和横波波速。此种表达方式,当α=0代表对称模态,当α=π/2代表非对称模态。

根据平板中的频散关系可以得出导波频散曲线,如图1所示。从中可以看出,在同一频率下同时存在多种导波模态。如800kHZ以下,同时存在有有三种模态,分别为A0模态、S0模态和SH0模态。随着频率的增加,同时存在的导波模态数也会随之增加,如在2MHz下,平板内存在有8种可传播模态。导波这种多模态效应会使得接收到的缺陷反射信号复杂化,对其检测应用产生较大影响。

另外从频散曲线图中还可以看出,同一模态导波在不同频率下的传播速度会发生变化,这将导致激发信号中不同频率的成分随传播距离的增加逐渐分散,导致激发信号时域延长,幅值降低。图2为中心频率为200kHz的A0模态在2mm厚钢板中激发波包随传播距离的变化过程,从中可以看出,随着传播距离的增加,导波的频散特性将会导致波包在时域上的延长,同时波包幅值也将严重降低。这种现象将造成检测信号的叠混和减弱,使得缺陷特征无法识别。

频率-波数曲线

(a)频率-波数曲线

频率-相速度曲线

(b)频率-相速度曲线

频率-群速度曲线

(c)频率-群速度曲线

图1.  2mm厚钢板的频散曲线

(弹性模量216.9GPa,泊松比0.28,密度7.9×103kg/m3)

 

 中心频率为200kHz的A0模态在2mm钢板中的频散现象     中心频率为200kHz的A0模态在2mm钢板中的频散现象

(a)                                      (b)

 中心频率为200kHz的A0模态在2mm钢板中的频散现象     中心频率为200kHz的A0模态在2mm钢板中的频散现象

(c)                                     (d)

图2 中心频率为200kHz的A0模态在2mm钢板中的频散现象

(a为激发信号;b为传播1000mm厚波形;c为传播1500mm后波形;d为传播2000mm后波形)

导波的多模态和频散特点使其在信号激励、质点振动、传播、接收和信息提取等方面均比常规超声波检测复杂。为了利用超声导波进行检测需要从信号的激发、传播、接收和信号提取等方面发展适用于超声导波的方法和技术。

3 解决方案

3.1 单模态超声导波激发

超声导波具有多模态的特点,随着激发频率的增加导波模态数不断增加。导波的多模态特点会增加信号复杂性,使缺陷特征信号难以识别。因此为了适用于检测应用,需要激发单一导波模态。

根据导波频散特性曲线,在高阶导波模态截止频率以下(对于2mm厚钢板为810kHz),仅存在三种0阶导波,包扩对称模态S0、非对称模态A0、水平剪切模态SH0。因此控制激发信号频率在高阶导波截止频率以下可以将导波模态数降至三种。

对于S0、A0和SH0模态,其模态形状存在区别。A0模态主要以离面位移为主,如图3(a)所示,S0模态和SH0模态主要以面内位移为主,其中S0的位移方向于波传播方向平行,如图3(b)所示,SH0模态的位移方向与波传播方向垂直,如图3(c)所示。

 不同导波模态激发施力图      不同导波模态激发施力图

(a)  A0模态激发示意                    (b)S0模态激发示意

不同导波模态激发施力图

(c)SH0模态激发示意

图3 不同导波模态激发施力图

超声导波激发的实质上就是在被检测对象中耦合进模态所对应的应力波,为了获得单一的导波模态,需要通过传感器优化来增强所需模态对应的表面应力分布,同时抑制其他模态对应的表面应力分布。

目前可以用于在被检测结构中耦合进导波应力场的传感器可分为如下几类:压电式换能器,电磁声换能器(EMAT),磁致伸缩换能器,激光超声换能器。压电式换能器主要利用晶体材料的压电效应和逆压电效应作为导波激发和检测传感器,目前常用的压电材料主要有PZT和柔性的PVDF。其中PZT材料的压电转换效率较高,成本较低,但是材料无法弯曲;PVDF材料也具有压电效应,但是其压电性相对于PZT材料要低,其优点在于材料具有柔性,可以弯曲。电磁声换能器(EMAT)主要通过改变金属结构中的电磁场,利用Lorenz力激励导波应力场。用于超声导波激发的磁致伸缩换能器(MT)最早由H.Kwun等人提出,其主要利用磁致伸缩效应实现导波应力场的激发。激光声换能器利用激光脉冲束在被检测构件表面产生热应力振动,实现超声导波的激发,激光声换能激发方式的仪器体积较大,成本较高,不适于现场检测应用,目前主要用于实验室研究工作。

上述导波换能器中,PZT压电晶片具有体积小、重量轻、成本低的优点,适用于结构健康状态监测应用,因此目前各国研究团队主要使用PZT压电晶片作为导波激发和接收换能器。

[1] [2]

关键字:PCI-9846  高速数字化仪  超声波检测

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2014/0902/article_9429.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
PCI-9846
高速数字化仪
超声波检测

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved