双流束热量表的流量测量技术研究

2013-08-03 13:37:31来源: 21ic 关键字:双流束热量表  流量测量技术  无磁式
1.引言

我国热量表技术较国外先进水平还有较大的差距。从国产热量表的三个重要组成部分积算仪、流量传感器温度测量技术现状看,由于多采用进口微处理器,积算仪的有关问题得到了较好的解决。温度测量多采用技术较成熟PT1000铂电阻,也得到较好的解决。目前问题较多的是流量测量部分,国产热量表基表多采用原有热水表,其测量精度和可靠性难以达到热量表的流量技术要求,因此开发精度高、工作可靠的热量表基表,是目前热量表研制的重要课题。本文对热量表单流束基表技术问题进行分析探讨,提出了“导流片”分流和叶轮室顶盖设置“调节筋条”调节当量脉冲新方法,得到了很好的效果。

2.单流束基表设计的技术方案

传统的单流束基表结构如图1所示,为了保证叶轮按一定的方向旋转,其进水口和出水口往往偏心设置,并在一定的部位设置当量脉冲的调整部件。这种结构存在以下弊端,首先进水口和出水口的偏心设置,给机械加工带来一定的难度,在加工进、出水口时,由于偏心设置,给工件的装夹、找正带来不便,费时费工,效率低下;同时给外形设计造成一定的困难,难以设计出美观的外形。再者,以往热量表基表多采用原有的单流束热水表,由于价格等因素的制约,其设计精度、材料的使用等存在较多的问题,其精度难以满足热量表流量检测精度的要求。


图1 传统的单流束基表结构示意图

为了消除上述弊端,本研究对热量表基表进行了全新设计。其结构如图2所示,为了便于加工,将进、出水口设计在一条直线上,这种设计给工件加工带来很大的方便,便于保证精度,可大大提高机加工效率。和传统基表相比,增加了叶轮式底座,底座和金属表壳过盈配合,叶轮室上盖和底座采用耐高温的PPS制作,可保证热水长时间浸泡不致发生变形,以保证热量表工作的可靠性。


图2 新型单流束基表
1-表壳底座 2-叶轮室底座
3-整流隔栅 4-叶轮
5-叶轮室上盖 6-表壳盖
7-挡块 8-半圆膜片
9-刚玉 1 0-轴套

叶轮式底座的俯视形状如图3所示,为了保证水流对叶轮叶片有一定的冲击角度和水流顺利流出基表,叶轮式底座进水口和出水口与表壳的进水口、出水口有一定的夹角,同时在进水口处设置一三角形的导流片。为了调节脉冲当量,在叶轮式上盖朝向叶轮的一面设置一横向筋条,通过调整筋条和基表进、出水口轴线之间的夹角,达到调节脉冲当量的目的。


图3 叶轮式底座

3.基表内部水流特性的分析

热量表工作时水流从基表进水口经整流隔栅进入基表,在叶轮室底座入口处由导流片分流成两股,分别从两个通道进入叶轮室。水流在叶轮室内产生旋转运动,推动叶轮旋逆时针旋转,之后依次经叶轮室出口、基表出口流出。本设计中所采用了无磁式流量传感方式,就是通过叶轮室上盖上方设置的三个电感在叶轮旋转时产生振荡信号来实现的。

由图3可见,叶轮室入口的收缩流道截面积A1沿水流方向逐渐减小,而扩张流道截面积A2逐渐增大,由不可压缩流体的连续性方程可知,过流面积和流速成反比,进入收缩流道的水流速度V1将增大,而进入扩张流道的水流速度V2将减小。由伯努利方程可以得到,V1减小,p 1增大,V2增大,p2减小,如此从两个通道进入叶轮室的水流之间就存在压强差 ,此压强差将推动水流向压强小的方向流动,从而推动叶轮逆时针旋转;收缩通道提高了进入腔体的水流速度,增大其动量,在微小流量时,叶轮受轴与轴承之间摩擦阻力的影响较大,如果基表中不设此导流片而是一个单一通道,水流更易直接从叶轮间隙流过,而不推动叶轮旋转,从而使始动流量值增大。

由上述分析可知,在流动初始时刻,两通道的几何形状对决定叶轮旋转方向至关重要,该设计依靠两通道出口的压强差使水流在基表腔体内沿逆时针方向流动。第二通道出口水流速度V2大于第一通道出口速度V1,并且偏转的角度较V1更大,这种流动机制决定了水流开始流动时叶轮必须沿逆时针方向旋转。

最初设计的叶轮室及导流片形状如图3,导流片前端靠近叶轮室外径处是一尖角,其与中心连线和横轴的夹角为8度,在进行85℃热水试验后,导流片变形受损,因此,必须加以改进。改进从两个方面着手,一是更换耐高温的材料,再就是改变导流片的几何形状。

导流片的改进示意图见图4。改进前的导流片横截面为三角形ABC,改进后为五边形AAB’BC。A’,B’比A、B两点向中心线方向偏移2°。如此改动之后导流片的横截面积增大,厚度增加,强度也必然相应提高。同时,导流片靠近中心线一侧倾斜角度减小,改变了收缩通道的形状,流经此通道的水流流动情况相应的会发生变化。
[1] [2]

关键字:双流束热量表  流量测量技术  无磁式

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2013/0803/article_7644.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:我国食品包装氧透过率测定装置的应用
下一篇:流量设备备件的选型及采购

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
双流束热量表
流量测量技术
无磁式

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved