现代行波故障测距原理及其在实测故障分析中的应用

2013-01-16 09:25:37来源: 21IC

0  引言
    输电线路行波故障测距技术因具有测距精度高和适用范围广等优点,一直为继电保护专业人员所关注[1]。早在20世纪50年代,国外就研制出A、B、C、D等4种基本型式的行波故障测距装置,但因存在可靠性差、构成复杂以及价格昂贵等问题,终究没有得到推广应用。
    20世纪80年代,国内外在A型早期行波故障测距原理的基础上,提出了集保护和测距为一体的行波距离保护原理[2,3]。但由于测距算法不可靠以及现场试验条件的限制,行波距离保护没有得到进一步的发展。
    20世纪90年代,我国提出了利用电流暂态分量的输电线路行波故障测距原理、算法及其实现方案[4-8],从而推动了现代行波故障测距(MTWFL)技术的发展[9],并相继研制出集A、D、E等多种原理的现代行波故障测距装置和系统,其绝对测距误差已经能够达到200 m以内 [10,11]。在应用研究领域,为了进一步提高行波故障测距的精度,小波模极大值检测理论已经被越来越广泛地用于单端和双端行波故障测距研究[12-15]。
    近年来,国内学者开始将A型现代行波故障测距原理用于继电保护,并提出了基于小波变换的测距式行波距离保护原理[16,17]。
    为了将A型现代行波故障测距原理更好地用于实测波形分析,本文将其划分为3种独立的运行模式,即标准模式、扩展模式和综合模式,并给出了各自用于实测电流暂态波形分析的典型实例。

1  A型现代行波故障测距原理的运行模式
    A型现代行波测距原理为单端原理。根据所检测反射波性质的不同,可以将A型现代行波测距原理分为3种运行模式,即标准模式、扩展模式和综合模式。在标准模式下需要检测故障点反射波,在扩展模式下需要检测对端母线反射波,而在综合模式下则需要检测第2个反向行波浪涌并识别其性质。
1.1  标准模式
    标准模式下的A型现代行波故障测距原理利用线路故障时在测量端感受到的第1个正向行波浪涌与其在故障点反射波之间的时延计算测量点到故障点之间的距离,其基本原理与早期的A型行波故障测距原理相同。为了实现标准模式下的A型现代行波故障测距原理,在测量端必须能够准确、可靠地检测到故障引起的第1个正向行波浪涌在故障点的反射波。
1.2  扩展模式
    扩展模式下的A型现代行波故障测距原理利用线路故障时在测量端感受到的第1个反向行波浪涌与经过故障点透射过来的故障初始行波浪涌在对端母线反射波之间的时延计算对端母线到故障点之间的距离。
    为了实现扩展模式下的A型现代行波故障测距原理,在测量端必须能够准确、可靠地检测到经故障点透射过来的故障初始行波浪涌在对端母线的反射波。
    当故障点对暂态行波的反射系数较小时,在测量端可能检测不到本端第1个正向行波浪涌在故障点的反射波,从而导致标准模式下的A型现代行波故障测距原理失效。但在这种情况下,扩展模式下的A型现代行波故障测距原理却能很好地发挥作用。
1.3  综合模式
    综合模式下的A型现代行波故障测距原理利用线路故障时在测量端感受到的第1个正向行波浪涌与第2个反向行波浪涌之间的时延计算本端测量点或对端母线到故障点之间的距离。
    分析表明,无论母线接线方式如何,故障初始行波浪涌到达母线时都能够产生幅度较为明显的反射波[4]。可见,当线路发生故障时,测量端感受到第1个正向行波浪涌和第1个反向行波浪涌的时间是相同的。测量端感受到的第2个反向行波浪涌既可以是第1个正向行波浪涌在故障点的反射波(当故障点位于线路中点以内时),也可以是经过故障点透射过来的故障初始行波浪涌在对端母线的反射波(当故障点位于线路中点以外时),还可以是二者的叠加(当故障点正好位于线路中点时)。对于高阻故障(故障点反射波较弱),即便故障点位于线路中点以内,在测量点感受到的第2个反向行波浪涌也有可能为对端母线反射波。对于故障点电弧过早熄灭的故障(故障点不存在反射波),无论故障点位置如何,在测量点感受到的第2个反向行波浪涌均为对端母线反射波。
    因此,当线路故障时,如果在测量端能够正确识别所感受到第2个反向行波浪涌的性质,即可实现单端行波故障测距。具体说来,当第2个反向行波浪涌为本端第1个正向行波浪涌在故障点的反射波时,二者之间的时间延迟对应于本端测量点到故障点之间的距离;当第2个反向行波浪涌为对端母线反射波时,它与本端测量点第1个正向行波浪涌之间的时间延迟对应于对端母线到故障点之间的距离。
    可见,为了实现综合模式下的A型现代行波故障测距原理,在测量端必须能够准确、可靠地检测到故障引起的第2个反向行波浪涌并识别其性质。

2  利用电流暂态分量实现A型行波测距原理的直接波形分析法
2.1  行波故障测距基本关系
    从行波故障测距的角度,可以将母线分为两种接线类型[4],其中第1类母线连接有同一电压等级的多回线路,而第2类母线只连接有1回线路。电力系统中的绝大多数母线均为第1类母线。相对于来自线路MN方向的行波而言,测量端母线M的等效波阻抗等于该母线上除线路MN以外所有线路波阻抗和母线分布电容的并联阻抗。假定连接到母线M的所有线路具有相同的波阻抗,则可以将母线M对来自线路MN方向的电压暂态行波的时域反射系数KMR和时域透射系数KMT表示为:
   
    式中:F-1表示傅里叶反变换;K为除线路MN以外连接到母线M的线路回数(假定K≥2);C为母线M的分布电容;ZC为线路波阻抗。
    假定M端电流正方向为母线到线路方向,则线路MN故障产生的初始行波浪涌到达本端时所引起的本线路电流暂态故障分量可以表示为:

    M端第1个正向行波浪涌eF(t)(即故障初始行波浪涌在母线M的反射波)在故障点的反射波到达母线M时所引起的本线路电流暂态故障分量可以表示为:
  
    式中:KFR为电压暂态行波在故障点的反射系数(假定为常数)。

[1] [2] [3]

关键字:输电线路  现代行波  故障测距  电流暂态

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2013/0116/article_6678.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
输电线路
现代行波
故障测距
电流暂态

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved