基于LabVIEW的水循环温度控制系统设计

2012-07-25 18:07:58来源: 21ic

  引 言

  随着虚拟仪器的功能和性能被不断地提高,在许多应用中已成为传统仪器的主要替代方式。

  本文以水循环系统为研究对象,针对水循环的温度,在比较研究不同控制策略的基础上,建立精确的数学模型,对水循环温度控制进行了研究。通过数据采集卡对温度信号进行实时采集,并由软件平台对采集的信号进行分析,然后用数学模型控制算法处理输出,以使当前温度逼近设定值,从而达到温控目的,最后将采集数据保存记录,以备日后读取分析。利用虚拟仪器的巨大优越性改善水循环温度的控制品质,提高控制效果。
 

  1 水循环温度控制系统数学模型的建立

  1.1 水循环温控系统介绍

  水循环温控系统由储水箱、水泵、传感器、散热器和电加热装置组成,水循环原理图如图1所示。由于本系统对温度要求较高,要保证水管环境温度保持在20℃,故需建立合理的数学模型及控制算法,将温度传感器PT100采样性能通过散热器及电加热器的动态温度值模拟出来,最终达到高精度控制温度的作用。

水循环原理图

 

  1.2 水循环温控系统数学模型的建立

  水循环温控系统各个部分的温度因管道、散热装置和加热装置的原因会产生很大的变化。为了表达清楚达到预想的结果,就需要建立正确的数学模型。本设计根据实际情况,选择了几个特殊的点来建立模型。如图1所示,A,B,C,D,E,F六个点的温度,将引起变化的原因全部考虑进去,列出函数关系式,然后借助Lab—VIEW编程,由程序控制温度。

  (1)B点的温度函数关系式

  B点为采样点,B点的温度跟A点的温度因中间隔水箱会有一个延时K1,取在A点第N个采样值经过K1延时之后的平均值为B点的温度,它的温度函数关系为:

  K1)分别为A点第N-1,N-2,…,N-K1个采样时的温度值;V1为水箱的容积,V1=5 L;q为泵流量,q=0.083 L/s;T为采样周期,T=1 s;K1:为注满水箱需要的时间,即延时周期,通过计算K1=60 s。

  (2)A点的温度函数关系式

  A点的温度与D点的温度因水管而有个延时,故A点的温度函数关系如式(2)所示:

  为D点第N-K3个采样点的温度;V3为D点到A点水管的容积,V3=0.5 L;K3为从D点到A点的延时周期,通过计算K3=6 s。

  (3)D点的温度函数值

  D点的温度与C点温度相比,不仅仅是水管的散失而延时,还与电加热装置有关,函数关系如式(3)所示:

  为C点第N-K2个采样点的温度;P为电加热器的功率,P=1 kW;C为水的比热容,C=4.18 kJ/kg·℃;△T为电热前后的温度变化,通过计算△T=3℃;P\'为采样占控比,通过验证P\'=1或0;V2为C点与D点间水管的容积,V2=1 L;K2为从C点到D点的延时周期,通过计算K2=6 s。

[1] [2] [3]

关键字:LabVIEW  水循环  温度控制系统

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2012/0725/article_5521.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
LabVIEW
水循环
温度控制系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved