串联锂离子电池组监测

2012-01-31 09:39:12来源: eefocus

    具有高电压、高容量、循环寿命长、安全性能好等优点的锂离子电池,在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景。由若干节锂离子电池经串联组成的动力锂离子电池组目前应用最为广泛。由于每节单体电池的电压不一致,使用中电池不允许过充电、过放电,电池的性能和寿命受温度影响较大等特点,必须对串联锂离子电池组进行监测,确保在使用中锂离子电池具有良好的状态,或者使用中电池出现问题立即报警,电源管理系统立即采取保障措施,并提醒相关人员检修。单体电压和电池组的温度是辨别串联锂离子电池组是否正常工作的主要技术指标。文献[1]采用直接采样法,将要测量的单体电池电压存储在非电容上进行测量。该方法反应时间慢、误差较大、控制复杂;文献[2]采用运放和光藕继电器来测量串联电池组的单体电压。该方法对光耦的线性度要求很高,导致硬件成本较高。目前,直接采用集成芯片的串联锂离子电池组监控系统受到青睐,但该方法串联电池的数目固定,导致应用不灵活、硬件成本高等缺点。文中研制了一种动力锂离子电池组监测系统,对串联锂离子电池组的单体电压和电池组的温度进行在线监测,当单体电池电压偏离规定区间时,监测系统启动报警程序进行声、光报警;当电池组温度偏离规定的区间时,监测系统启动风扇或加热控制电路,并存储有关数据,确保电池组正常工作。整个监测系统具有连续测量分量、简单经济、精度高和可靠性高的特点。

  1 技术和方案

  1. 1 系统结构

  串联锂离子电池组监测系统包括采用51 系列单片机的核心控制模块、锂离子电池组状态采集模块、信号调理模块,报警及处理系统模块,监测系统可以通过RS485 接口与PC 机组成分布式监测系统,实现一台PC 监测多个串联电池组,系统结构框图如图1 所示。

  状态采集模块包括对单体电池的电压和电池组的温度等参数进行采集,然后待测量信号进行处理,通过A/D转换器采样后传输给单片机进行数据处理,将有效数据通过串口传到本地PC 机,监测人员可以通过对状态数据的进行分析从而掌握电池组的工作情况,对不安全的状态进行及时的处理,确保其工作的可靠性。

图1 串联锂离子电池组监测系统结构图
图1 串联锂离子电池组监测系统结构图

  1. 2 串联锂离子电池组的共地问题

  串联锂离子电池组电压测量的方法有多种,最简单的是电阻分压测量方法,该方法缺点是大阻值电阻的漂移误差和电阻漏电流导致测量精度低,且影响电池组的一致性。另外一种较为常用的方法是每一个单体电池用一个隔离运算放大器,但是它的体积大且价格高,适于测量精度要求高且不考虑漏电流和成本的场合。设计选用德州仪器公司的INA117 来解决串联锂离子电池组的共地问题[3].INA117 的失真为0. 001%; 共模拟制比最小86 dB,共模输入电压范围± 200 V,适合于高精度的测量。

  INA117 内置了380 kΩ、20 kΩ 和21. 1 kΩ3 个电阻,因此外部电路省去精密电阻,减少了精密电阻带来的误差和系统复杂程度。图2 是INA117 输出1 节电池电压的接法,6 脚和1 脚之间的电压就是1 节电池两端的电压差。

图2 INA117 输出电压是两输入电压之差的接法
图2 INA117 输出电压是两输入电压之差的接法

  该检测系统采用16 个INA117 分别把16 节锂离子电池的单体电压挑选出来。如果它们的1 脚都接相同的地,就可以使16 个INA117 都有相同的信号地,A/D 转换器进行采样。共地点选在第8 节电池负极和第9 节电池正极的连接处。

  每节锂离子电池最高电压为5 V,由图3 可得,第1 个INA117 的3 脚的输入电势最高为40 V.同理,第16 个INA117 的2 脚输入电势最低为- 40 V.第1 至8 个INA117 的输出电压为正,第9 至16 个INA117 的输出电压为负,所以多选一模拟开关和A/D 转换器都要求可以输入正、负电压。多选一模拟开关选用MUX16,为16 选1 可正负电压输入模拟开关,因此16节电池只需1 个MUX16.但由于单片机IO 口有限,文中用一片74LS154 扩展了IO 口,仅用单片机的4 个IO 口即可控制MUX16 分别选通单节锂离子电池进行电压采样。

图3 16 个INA117 的共地点接法
图3 16 个INA117 的共地点接法

  1. 3 A/D 转换器

  监测电池组无需用很高的采样速度采样每节电池的电压,16 节电池电压的采样共用1 个A/D 转换器[4]。各节电池输入的测量电压通过多选一模拟开关MUX16 与A/D 转换器连接。根据电池电压的更新周期和电压要求,A/D 转换器传送给单片机的电压转换值误差最大为10 mV.选择美信公司MAX1272.

  MAX1272 是具有故障保护、可通过软件选择输入范围的12 位串行模拟数字转换器,使用SPI 三线通信协议,+ 5 V 供电,模拟输入电压范围0 ~ 10 V,0 ~ 5 V,± 10 V,± 5 V.内部自带+ 4. 096 V 参考电压。当采用内部+ 4. 096 V 参考电压时,理想情况下模拟电压输入对应的数字输出,如表1 所示。
表1 理想情况下模拟电压输入对应的数字输出
表1 理想情况下模拟电压输入对应的数字输出

  由表1 可知,MAX1272 输出的数字量最高位是符号位,余下的11 位是数据。负数以补码的形式给出。

  参考电压为+ 4. 096 V 时,1LSB = 1. 220 7 mV.

  MAX1272 的最大量化误差,加上非线性、失调等误差的影响,总误差约为5 mV.INA117 精度高,正常情况下,误差在1 mV 以内。因此,使用INA117 和MAX1272 的组合,可以满足串联锂离子电池组电池监测系统在电压误差10 mV 以下的要求。需要更高的电压精度,需要选用更高分辨率的A/D 转换器。

  MAX1272 的线路连接图如图4 所示。

图4 MAX1272 的线路连接图
图4 MAX1272 的线路连接图

  图4 中MAX1272 采用了内部参考电压,6 脚VREF 和地之间接2. 2 μF 钽电容和0. 1 μF 陶瓷电容。

  PCB 布线时,这两个电容都要求尽量接近MAX1272。

[1] [2]

关键字:差分放大器  模拟开关  DS18B20  电阻分压

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2012/0131/article_4510.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
差分放大器
模拟开关
DS18B20
电阻分压

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved