基于树形检测器的多标志识别

2011-06-21 13:33:35来源: 互联网 关键字:soft  cascade  joint  boosting  canny算子

0 引言
    自动的电视台标检测和识别已经在多媒体领域获得非常高的关注度。如今,多数的手机都具备了摄像头功能,所以人们可以随心所欲地拍摄各种事物,然后利用各种算法去分析处理获得的图像。本文中,展示一个系统一利用手机内置摄像头帮助人们识别电视频道信息。日常观看的电视频道就有几十个不同的台标,所以可以把这个问题看作是一个多类检测问题,而单类的检测即识别,最终就实现了多类识别。
    对于单类检测问题,Viola和Jones给出了state-of-the-art算法。他们先训练了一系列节点分类器去检测图像里的每一个子窗口,只有那些能够通过所有节点分类器的子窗口图像才被认为是正样本。吴将Voila的工作简单地拓展到了多视角人脸检测上,为每个独立的人脸视角训练了一个不同的 cascade结构,并且并行地运用它们进行检测。但是当正样本的类型数量增加时,这个方案所花费的检测时间也是线性增长的,而这个代价是我们无法负担的。Torrobla提出了一种新的boosting框架,命名为jointboosting。他将N类分类问题转化为N-1个两类分类问题,然后自动地共享相同的弱分类器。尽管它的检测器可以共享特征,但是当检测目标时,它仍然需要计算全部特征,所以它并不是一个快速检测框架。
    近些年来,树形检测器被引入了多视角人脸检测应用中。许多研究者更加偏爱于这种树形结构,例如,Fleuret和Geman的scalar tree,Li等人的金字塔结构,还有Huang chang的广度优先搜索树。在他们的工作里,Huang的工作最有新意,他提出来一种新的输出一个布尔矢量的boosting算法,取名为vector boosting。由于它具有良好的性能,本文选用它作为分叉树的部分。有别于多视角人脸的并行结构,经验证明直接构建一个由粗到精的树是比较困难的。故此,本文设计了一种根据不同组合的误报率来构建分叉树的方法。详细的方案会在1.3中阐述。
    本文的其他部分是这样组织的:在1.1小节中,本文介绍所采用的特征集,然后简要地描述下普通cascade结构和soft cascade结构。在实验过程中,作者测试了本文算法的精确度和检测所需的平均特征数。

a.JPG

1 检测器框架
    在实验中,本文采用了一架摄像机来拍摄电视节目的全屏幕图像。考虑到此方法的通用性,不假设关于台标位置的先验信息(尽管台标通常会出现在屏幕的上部)。为了可以检测出台标,本文先使用了一个分类器对大量的不同尺度和位置的子窗口进行扫描。因为多数的子窗
口都是背景,而背景的轮廓特征不明显,所以可以将任务分割成两个部分:首先是尽可能早的拒判掉非台标的子窗口,然后是区别每个台标属于哪个频道。接下来描述下算法的第一部分。

[1] [2] [3] [4]

关键字:soft  cascade  joint  boosting  canny算子

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2011/0621/article_2752.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:无线HDMI MIMO数字视频测试系统
下一篇:基于Video Port的Camera Link的图像采集接口设计

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
soft
cascade
joint
boosting
canny算子

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved