利用MAX5060设计带无损电流检测的大电流电源

2011-06-16 10:31:41来源: 互联网

概述

目前,大多数数据处理单元需要从电源消耗更大的电流,以满足更高的处理速度。这些应用中,无损电流检测以及地电位偏差对于精确控制输出电压、输出电流非常关键。

MAX5060 PWM降压电源控制器利用平均电流模式控制技术跟踪负载电流,器件采用差分检测技术精确控制输出电压。本参考设计中利用电感的等效串联电阻(DCR)检测电流,省去了检流电阻的功耗。

本参考设计提供了一个大电流(30A)电源设计方案,具有较高的系统效率和良好的负载调节,以下给出了完整的电路原理图、材料清单(BOM)、效率测量及测试结果。

 

规格与设计步骤

参考设计能够达到以下技术指标。
输入电压:12V ±10%
输出电压:1.5V
输出电流:30A
输出纹波:±15mV
输入纹波:±250mV
效率:> 88%,负载为满负荷的一半(15A)
开关频率:275kHz
电路板外形尺寸:5cm × 3.3cm

参考设计原理图如图1所示,元件清单如表1所示,设计中MAX5060采用降压配置。

图1. MAX5060降压转换器原理图(FSW = 275kHz)
详细图片(PDF, 100kB)
图1. MAX5060降压转换器原理图(FSW = 275kHz)

表1. 元件清单

Designator Description Comment Footprint Manufacturer Quantity Value
C1, C20 Capacitor GRM1555C1H101JZ01D 402 Murata 2 100pF
C2 Capacitor GRM155R71E223KA61D 402 Murata 1 22nF
C3 Capacitor GRM155R71H682KA88D 402 Murata 1 6.8nF
C4 Capacitor GRM1555C1H470JZ01D 402 Murata 1 47pF
C5 Capacitor GRM155R61A224KE19D 402 Murata 1 0.22µF
C6, C12 Capacitor GRM155R61A474KE15D 402 Murata 2 0.47µF
C7, C8, C9, C18 Capacitor GRM188R71A105KA61D 402 Murata 4 1µF
C10, C11 Capacitor GRM32ER71C226KE18L 1210 Murata 2 22µF/16V
C13, C14 Capacitor GRM32ER60J107ME20L 1210 Murata 1 100µF/6.3V
D1 Schottky Diode CMHSH5-2L SOD123 Central Semiconductor 1 20V, 500mA Schottky
D2 Schottky Diode UPS835LE3 POWERMITE3 Microsemi 1 35V, 8A Schottky Rectifier
L Inductor T5060 (0.6µH) T5060_Falco_Inductor Falco 1 0.6µH
R1 Resistor Res1 402 Multisource 1 1.7kΩ
R3, R16 Resistor Res1 402 Multisource 2 12.7kΩ
R4, R21 Resistor Res1 402 Multisource 2 4.99kΩ
R5, R20 Resistor Res1 402 Multisource 2 100kΩ
R6 Resistor Res1 402 Multisource 1 226kΩ
R7 Resistor Res1 402 Multisource 1 Open
R8, R19 Resistor Res1 402 Multisource 2 10kΩ
R9 Resistor Res1 402 Multisource 1 0
R10 Resistor Res1 402 Multisource 1 5.6kΩ
R11 Resistor Res1 402 Multisource 1
R12 Resistor Res1 402 Multisource 1 2.2Ω
R13, R22 Resistor Res1 402 Multisource 2 715Ω
R14 Resistor Res1 402 Multisource 1 1.82Ω
R15, R18 Resistor Res1 402 Multisource 2 22Ω
R17 Resistor Res1 402 Multisource 1 8.45kΩ
U1 PWM Controller MAX5060 28-TQFN-EP Maxim 1

 

效率曲线

图2给出了参考设计的效率与负载电流的关系曲线,图3给出了负载调节参数曲线。

图2. 负载电流与转换器效率的关系曲线,VIN = 12V。
图2. 负载电流与转换器效率的关系曲线,VIN = 12V。

图3. 负载电流与转换器输出电压的关系曲线,VIN = 12V。
图3. 负载电流与转换器输出电压的关系曲线,VIN = 12V。

[1] [2]

关键字:利用  设计  无损  电流

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2011/0616/article_2711.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
利用
设计
无损
电流

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved