基于微处理器的宽频带相位测量系统的设计与应用

2011-06-09 14:05:13来源: 互联网

  相位测量在工业自动化仪表、智能控制及通信电子等许多领域都有着广泛的应用,对相位测量的要求也逐步向高精度、智能化方向发展。对于低频相位测量,一般采用数字脉冲填充法对输入信号的相位进行测量都能实现。但是,要想满足一定的测量精度就要求微处理器的时钟频率足够高。

  同样,运用此方法对高频信号进行测量时,由于相位差相对较小,一般的微处理器时钟频率,已经无法满足高精度的计数要求,这样必然会影响相位测量的精度。所以,必须提高标准时钟的计数频率,才能满足测量要求。这样,一方面增加了设计本身的难度,另一方面也提高了选用元器件的要求。本系统首先采用频率变换法将高频输入信号转换成低频信号后,且保持原信号的相位不发生变化,再利用基于ADuC7128 为控制核心的数字测相系统进行测量,从而完成了宽频带输入信号的相位测量。

  1 差频变换原理的引入

  利用数学模型将被测信号和参考信号描写成如下形式:

  被测信号:

  参考信号:

  其中: A 为被测信号的幅值; B 为参考信号的幅值; f为被测信号的频率; f0 为参考信号的频率; θ 是被测信号的幅角。

  同时,将两个信号y1 和y2 送入混频器内进行混频操作相乘后,会得到信号y3。

  再将y3 送入低通滤波器进行滤波处理,滤除高频信号,剩下的低频信号数学表达式为:

  y3 与y1 相比,幅度呈线性变化,幅角不变,但频率降低,其频率是被测信号与参考信号的频率差。对于测量y3 来说,比直接测量y1 容易得多。这样把差频变换法应用到高频信号的相位测量上,既可以提高相位测量的精度,又可以拓宽输入信号的频带。

  2 数字测相系统设计

  2. 1 硬件结构设计

  如图1 所示,本系统主要由信号调理电路、频率变换电路以及微处理器控制电路3 部分组成。

硬件电路原理框图

图1 硬件电路原理框图

[1] [2] [3] [4]

关键字:微处理器  处理器  设计  应用

编辑:什么鱼 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2011/0609/article_2643.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
微处理器
处理器
设计
应用

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved