基于机器视觉的摄像机标定方法研究

2009-06-17 15:55:51来源: 中电网

0 引言

  机器视觉的基本任务之一是从摄像机获取图像信息并计算三维空间中物体的几何信息,以由此重建和识别物体。而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在大多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为摄像机定标(或称为标定)。标定过程就是确定摄像机的几何和光学参数,以及摄像机相对于世界坐标系的方位。由于标定精度的大小,直接影响着计算机视觉(机器视觉)的精度。因此,只有做好了摄像机标定工作,后续工作才能正常展开,可以说,提高标定精度也是当前科研工作的重要方面。

1 摄像机透视投影模型

  摄像机通过成像透镜将三维场景投影到摄像机二维像平面上,这个投影可用成像变换(即摄像机成像模型)来描述。摄像机成像模型分为线形模型和非线性模型。针孔成像模型就属于线形摄像机模型,本文就讨论在这种模型下,某空间点与其图像投影点在各种坐标系下的变换关系。图1所示为三个不同层次的坐标系在针孔成像模型下的关系。其中(Xw,Yw,Zw)为世界坐标系,(x,y,z)为摄像机坐标系,XfQfYf为以像素为单位的图像坐标系,XOY为以毫米为单位的图像坐标系。


  图像中某点在以毫米为单位的图像坐标系中的坐标与其在以像素为单位的图像坐标系中的坐标的变换关系如下:


  空间某点在世界坐标系中的坐标与其在摄像机坐标系中的坐标变换关系如下:


  其中,为3×3正交单位矩;t为三维平移向量;M2为4×4矩阵。

  由于针孔成像模型有如下关系:


  所以,将(1),(2)代入上式的齐次坐标和矩阵表示可得:


  其中,M1为摄像机内参数,M2为摄像机外参数。确定某一摄像机参数称为摄像机定标。

[1] [2] [3]

关键字:机器视觉  摄像机标定

编辑:小甘 引用地址:http://www.eeworld.com.cn/Test_and_measurement/2009/0617/article_662.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
机器视觉
摄像机标定

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved