利用 SPICE 设计 TEC 温度环路 PID 控制

2012-05-31 09:02:45来源: EEWORLD 关键字:运算放大器  温度传感器  SPICE  PID  TEC  EDFA  TMP20  OPA

使用模拟比例积分微分 (PID) 控制器的温度控制是一种非常简单的电路,是确保热电冷却器 (TEC) 的设置点能够对温度或者激光进行调节的有效方法。比例积分项协同工作,精确地伺服TEC的电流,以维持控制器的温度设置点。与此同时,微分项对完成上述工作的速率进行调节,从而优化总体系统响应。如果可以对总体系统响应H (s) 进行描述,则为其设计 PID 控制器G (s) 的最为方便和有效的方法是利用 SPICE 进行仿真。

步骤1:确定SPICE模型的TEC/Temp传感器阻抗
要想把 SPICE 作为 PID 环路设计的一种有效工具,获取温度环路的热响应非常重要,目的是获得 PCBTEC 激光二极管温度传感器接线的实际热敏电阻、电容和传输函数。记住,由于实际热特性会出现高达50%的变化,因此最好是向实际系统注入一个热步进输入,并对其进行测量,以获得最佳的 SPICE 仿真热模型。

如果对热连接线进行描述,请使用“外环路、内环路”程序来确定G (s) 模块中控制放大器的总体环路响应和稳定性。在所有情况下,都会使用一个非常大的电感来中断外环路和内环路,并通过一个大电容器和 AC 电源激励环路。

步骤 2:中断G(s)和H(s)之间的外环路
外环路定义为围绕G(s)和H(s)模块的一条通路。使用图 1 进行模拟的目标是中断外环路,获得H(s)、G(s)和总环路增益,以验证热环路稳定性。这种情况下,图 2 显示相位降至零度以下,而环路增益变为 0 dB,其表明整个环路不稳定。因此,改变 G(s)应加强 PID 控制,并增加温度环路的稳定性。


 

图 1 仿真电路获得环路增益和相位
 

图 2 图 1 的环路增益和相位曲线图

图 3 中改进型G (s) 模块包括 PID 组件。微分电路的角频由 R7 和 C3 设定;R3 设置比例增益;C2 和 R6 设置积分电路角频。

图 3 补偿G (s) 的仿真电路

步骤3:中断G(s)“内环路”,确定本地放大器稳定性
构建完整 PID 组件的最后一步是中断内环路,检查本地放大器 (OPA2314) 的稳定性,从而确保其稳定性与总环路增益无关。在这种情况下,放大器要求使用一个50 pF电容器(请参见图 4),以维持本地环路的稳定运行。


 

图 4 经过补偿的本地G (s) 环路的最终电路

下次,我们将讨论一种 20W 放大器毁掉 100W 扬声器的糟糕设计,敬请期待。

参考文献

• 《运算放大器稳定性,第2部分(共15部分):运算放大器网络,SPICE分析》,作者:Green, Timothy,发表于2006年《En-Genius》(原《模拟地带》)。
• 《热电冷却器的 PSPICE 兼容等效电路》,作者:Simon Lenvkin, Sam Ben-Yaakov,发表于2005年“电力电子专家大会” PESC '05. IEEE 36th。
• 《包括热效应在内的热电元件SPICE模型》,作者Chavez, J.A., Salazar, J, Ortega, J.A.和Garcia, M.J.,发表于2000年“仪器测试与测量技术大会”第17届IEEE会议记录。

关键字:运算放大器  温度传感器  SPICE  PID  TEC  EDFA  TMP20  OPA

编辑:eric 引用地址:http://www.eeworld.com.cn/MEMS/2012/0531/article_1315.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:高准确度温度传感器和双通道电压监视器
下一篇:TDK宣布可满足150℃要求 NTC 温度传感器量产

论坛活动 E手掌握
关注eeworld公众号
快捷获取更多信息
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
运算放大器
温度传感器
SPICE
PID
TEC
EDFA
TMP20
OPA

小广播

独家专题更多

TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved