利用MEMS技术制作无线通信用RF元件

2008-07-09 16:22:55来源: 我爱研发网

  最近几年利用微机电系统(MEMS;Micro Electro Mechanical System)技术,在硅晶圆基板表面制作机电结构的技术备受关注,主要原因移动电话与WLAN(Wireless Local Wireless Network)等无线通信,随着宽频化、高频化、全球化的技术进化,高频用射频元件(Radio Frequency devices)成为不可或缺的关键性元件,尤其移动电话的RF单元必需使用高Q值,适合2~5GHz高频的FBAR滤波器(Film Bulk Acoustic Resonator filter)的发展,更是受到通信业者高度注意。有监于此本文要介绍FBAR滤波器(filter)、RF-MEMS开关(switch),以及MEMS可变电容器的制作技术。

  发展经纬

  宽频化后的移动电话面临HSDPA(High Speed Downlink Packet Access)、Super3G、4G等技术挑战,在此同时WLANIEEE802同样面临2.5GHz、5GHz、WiMAX(World Interoperability for Microwave Access)系统高频领域标准化等问题。

  针对2.0GHz以上的高频化需求,除了必需使用频率范围比SAW滤波器更高的FBRA滤波器之外,高频电路的小型化、低成本化、模组化、一体化(monolithic)也是业者必需克服的难题,一般认为在硅晶圆基板表面制作RF-MEMS,可以获得较佳的竞争优势。

  在此同时移动电话与WLAN宽频化后,电路系统的消费电力也随着增加,而且更容易受到多通衰减(multi pass facing)的影响,有效对策例如使用适应型阵列天线(adaptive array antenna)技术等等。然而利用RF元件达成上述技术时,必需使用可变或是可切换元件,因此低损失、低歪斜MEMS元件的发展,受到无线通信业者高度期待。

  有关宽频化方面的进展,虽然多频(multi band)已经行之多年,不过系统切换用开关要求使用低损失、高绝缘、低歪斜的RF开关。

  有关终端高性能方面的进展,国外通信业者正积极开发软体选择「软件无线技术(SDR;Software Defined Radio)」,试图应用在各种移动通信系统,在此前提下如果应用MEMS技术,可望制成可变电容器与可变电感器等无线通信元件。

  

  FBRA滤波器的制作技术

  首先介绍5GHz WLAN用、2GHz W-CDMA用FBRA共振体与滤波器的构造、压电薄膜电极膜的选择槽穴(cavity)的制作方法,以及低损失宽频化BRA滤波器的设计技巧。

  所谓FBRA是指压电体被施加交流电界时,压电体厚度方向发生振动,利用压电体具备的固有振动特性的共振器而言。FBRA的动作特性与 、 、石英bulk共振体非常类似,不过传统 bulk共振体高频化时有一定极限,无法应用在 等级,必需改用SAW构成的共振体与滤波器。目前SAW元件广泛应用在行动电话,全球市场需求量更高达20亿个以上,FBRA与SAW元件处于相互竞争的局面,不过FBRA具备以下优点:

  ⑴. 无微细图案(fin pattern)容易高频化,电极的耐电力性非常高。

  ⑵. 高Q值(表示共振器的锐利度)构成的共振体与滤波器损失非常低。

  ⑶. 在硅晶圆半导体基板上制作FBRA,RF电路可以一体化。

  如上所述施加交流电界时压电体会自由振动,因此FBRA要求一定空间(cavity)。图1是FBAR与SAW的结构比较,由图可知FBAR的基本结构,分别在硅晶圆半导体基板上制作具备空间的下方电极、压电薄膜、上方电极,整体结构非常简洁。若与SAW的结构比较,SAW必需激振弹性表面波,此外为进行收讯基板表面设置数十根梳状电极,至于电极的数量则取决于共振频率与电极间距 (图1(b))。

  

  

  相较之下FBAR的共振频率是由压电薄膜厚度决定,虽然空间可以利用传统干蚀刻技术制作,不过它属于异方性干蚀方式,为确保预期的空间,制作上会产生所谓的「坏死空间(dead space)」不适合小型化元件加工,而且干蚀刻加工方式不易维持尺寸精度,必需改用可以作深孔蚀刻的Deep-RIE技术,才能够获得小型、高精度的共振器(图2)。

  

  

  压电薄膜通常都使用AIN、ZnO等材料。表1是使用AIN、ZnO压电薄膜的特性比较,由表可知ZnO具有高电气机械结合系数的优点,不过综合考虑音速、频率温度系数、高Q等特性时,研究人员最后决定改用AIN材料。

  材料 AIN ZnO

  电气机械结合系数k2(%) 6.5 8.5

  频率温度系数(ppm/℃) -25 -60

  音速(m/s) 11300 6080

  高Q 良好 控制复杂

  

  表1 压电薄膜的特性比较

  图3是使用AIN与ZnO材料的压电薄膜,5GHz时的共振特性比较,如图所示使用AIN的压电薄膜具有尖锐(sharp)良好的共振特性,滤波器低损失化与宽频化时要求结晶性良好的AIN,尤其是AIN的c轴配向非常好,它对电极薄膜的选择与表面状态是非常重要的要素。

  

  电极材料的要求特性分别如下:

  ⑴.高音响阻抗(impedance)(亦即高杨氏率、高密度)。

  ⑵.低阻抗。

  ⑶.低表面粗糙性。

  因此新世代FBAR的电极使用高音响阻抗Ru材料。Ru质电极表面状态经过平坦化加工,在其上方堆积的AIN可以顺利达成高配向化,若与传统Mo电极材料比较,Ru质电极可以获得高Q值,图4是FBAR的压电薄膜与电极断面构造。

  

  滤波器的设计经常应用在SAW滤波器,图5是梯型(Ladder Type)FBAR滤波器的内部结构,如图所示它是由并联碗型共振器与串联碗型共振器,两者呈阶梯状连接构成,接着使两种共振器的反共振频率接近一致,如此就能够获得良好的频通(band pass)特性。此处为了赋予并联与串联共振器频率差,因此在并联碗型共振器上方制作负载膜,利用它的质量负载效应使频率低于联碗型共振器。此时只要设定连接后的共振器基本区段间段数,控制并联碗型共振器的静电容量比,以及晶片或是封装内配列的电感(inductance)(Lo,Lp),就能够控制滤波器的损失与衰减特性,获得低损失高频通特性的滤波器。

  

  

  研究人员应用上述技术分别开发两种滤波器,分别是北美欧洲地区用5.15~5.35GHz宽频FBAR滤波器,与日本地区用5.15~5.25GHz窄频FBAR滤波器。

  图6是北美欧洲地区用5.15~5.35GHz宽频FBAR滤波器的特性,由图可知该滤波器的损失低于2dB以下,SAW滤波器若与传统陶瓷滤波器比较,不论是损失或是频通都具有非常优秀的特性;有关耐电力特性,FBAR滤波器若与SAW比较,同样具有非常优秀的特性。

  

  图7是研究人员改变制程试作可以内建在2.0×1.6×0.6mm小型封装内的2GHz FBAR滤波器的特性,根据测试结果显示,它可以获得非常优秀的损失与频通抑压特性。

  

  RF-MEMS开关的制作技术

  行动电话内部的GaAs半导体开关,主要功能是切换天线与频域(band),通讯频率越高损失越大,绝缘特性相对降低,歪斜特性则随着增加,整体通信性能明显劣化。根据研究报告指出机械式RF-MEMS开关,在高频范围可以获得低损失、高绝缘以及线性特性。

  图8是典型接触式MEMS开关的基本结构,如图所示它是在设有信号线路的基板制作金属接点形成悬臂(cantilever)结构,利用连动器(actuator)驱动进行开、闭动作,利用薄膜的积层与图案化为主的表面加工制程制成的连动器,整体结构非常简洁,因此成为静电驱动型MEMS开关的主流。

  

  此外制作微米等级的高精度间隙(gap),长膜时要求精密的应力控制技术,一般认为不易实现低损失要求的线路低阻抗化,因此研究人员开发不需要应力控制可以实现低损失的RF-MEMS开关结构(图9)。

  

  新型RF-MEMS开关同样采用静电驱动型悬臂设计,信号线路利用厚膜电镀技术制作,它可以达成低阻抗化要求。具体步骤首先在高阻抗Si的SOI(Silicon on Insulator)表面制作上层硅,接着利用蚀刻技术通过栏(slit),去除中间的氧化膜形成悬臂,由于厚质bulk硅的悬臂是由薄膜构成,因此几乎无应力变形问题,而且能够在电镀金属之间形成高精度狭窄间隙。

  此时若对电镀制成的GND电极,与悬臂上方的驱动电极之间施加电压,悬臂受到静电影响会朝上方反翘,前端接点与信号线接触变成ON状态,悬臂同时利用接点支撑,由于悬臂拥有的弹簧系数非常大,因此构造上驱动电极一直到最后,都不会主动与GND电极接触。

  此外驱动电极与GND电极不需要挟持绝缘层,所以不会因为绝缘层charge up(亦即未施加电压状态下出现ON现象)发生误动作,一旦切断驱动电压利用悬臂的弹性,接点会跳脱信号线变成OFF状态。图10是RF-MEMS的电子显微镜照片;图11是编号SP4具备一个输入四个输出的RF-MEMS开关电子显微镜照片,SP4的驱动电压低于10V,属于低电压静电驱动型RF-MEMS开关;图12是上述新型RF-MEMS开关的动作特性,设计目标是2GHz时的损失低于0.3dB,绝缘大于30dB。

  

  

  

  

  MEMS可变电容器的制作技术

  目前大部份的移动电话RF电路单元,包含模拟被动元件在内的频率都被固定,随着移动电话高性能化,市场强烈要求RF模组小型化,同时必需能够支援多频化(multi band),一般认为同一个RF电路如果具备可以支援多频的可变同调功能,就能够大幅抑制电路制作成本与电路规模。接着介绍可以实现可变电容器被动元件的MEMS可变电容器的制作技术。有关MEMS可变电容器的结构,例如平行平板型或是梳状齿形电极,不易同时获得宽广可变容量()与高Q值,此外目前移动电话常用的利用电压控制容量的可变电容器(Varactor),虽然可变容量()非常宽广,不过Q值却不如预期高,因此研究人员决定利用MEMS技术,开发两者兼具的次世代可变电容器。

  图13是次世代MEMS可变电容器的基本构造,如图所示它是利用悬浮在空中的薄膜状上方可动电极,与下方可动电极挟持狭窄间隙,在封密领域形成电容器(Capacitor),此时为了获得大容量,因此在下方可动电极上方制作高诱电率绝缘性薄膜。一般积层薄膜容易残留薄膜应力不易获得平坦形状,必需有效利用电极的反翘特性设计可变结构,具体方法使电容器单元的下方可动电极朝上方弯曲(凸状),其中一部份接近上方可动电极,一旦对上下方可动电极之间施加电压,利两电极之间的静电吸引力使近接部位朝中心移动,两电极之间的间隙变窄电容量也随着改变,电极近接部位产生的静电变大,即使低电压也可以高精度控制电极之间的间隙,实现低电压大容量可变电容器的预期目标。

  

  图14是试作静电驱动型MEMS可变电容器(1.5×1.8mm)的外形;图15是施加电压时的电容量变化特性,根据测试结果显示次世代MEMS可变电容器,5V的驱动电压可以获得宽广容量变化,从0V到5V反覆次连续改变施加电压,它的容量变化几乎完全相同。

  

  为实现高Q值通常必需降低信号线的阻抗损失、基板的诱电损失,不过研究人员发现透过信号线路的最佳化设计、上下方可动电极的中空配置、改用玻璃材质基板等等,可以有效降低上述各种损失,即使2.4GHz也能够获得40左右的高Q值,整体而言次世代静电驱动型MEMS可变电容器的电容可变范围是传统的2倍以上。

  

  结语

  以上介绍次世代高频无线通信不可或缺的关键性元件,FBAR滤波器(filter)、RF-MEMS开关(switch),以及MEMS可变电容器的制作技术。(fengminxing)

关键字:可变电容器  电极  MEMS  压电薄膜  元件  滤波器  高Q值  RF  ZnO  频率温

编辑:孙树宾 引用地址:http://www.eeworld.com.cn/MEMS/2008/0709/article_191.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
可变电容器
电极
MEMS
压电薄膜
元件
滤波器
高Q值
RF
ZnO
频率温

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved