datasheet

采用LCC拓扑实现宽输出范围中大功率LED驱动电源

2016-09-08来源: EEWORLD 关键字:驱动器  电流  电阻
1. 引言
 
近年来,LED光源要求LED驱动器支持越来越宽的输出电压范围(比如25%-100%)以及输出电流范围(比如1%~100%,甚至0.1%-100%),以实现更宽的调光范围。为了提高LED驱动电源的通用性,要求使用同一个驱动电源支持不同的LED光源。同时要求线路简单,低成本,高效率,高可靠性,长寿命等。
采用16脚封装,集成PFC和半桥谐振控制器的ICL5101,并使用LCC拓扑很好的实现了以上目标,它的高集成度可减少外部元件数量,非常合适结合LCC高性能的优势。实现了极宽的输出电压电流范围(电压25%-100%, 电流0-100%),并且满载效率超过93%,同时电路简单,成本低。由于LCC的特性,它也可以实现无次级电流反馈恒流。
 
 
2. LLC与LCC拓扑的输出范围 
 
为了应对输出灯珠数和驱动电流的多样性,减少LED驱动电源的项目数目,需要尽可能的提高驱动电源的通用性,对输出电压电流范围就要求比较宽。
目前大功率恒流LED驱动电源的设计,比较常见的软开关拓扑是LLC,它的输出V-I特性如图-1所示。从图中可见,LLC拓扑的输出电压、电流范围下限都比较高。随着用户对调光要求的越来越高,LLC拓扑的这种输出特性的局限性也越来越明显。如果输出直接恒流,LLC拓扑在恒流时的电压不能够达到很低,即对灯珠个数的适应性有较大局限性;当需要对电压相对固定的特定灯串时进行调光的时候,调光电流在相对较窄的频率范围内不能达到比较低范围。如果需要做到深的调光深度,往往需要间歇工作以达到小的平均电流,甚至采用额外一级DC/DC电流来实现,产生额外的纹波电流或增加系统成本及降低效率。
一种更有优势的拓扑LCC被提出,在相对较窄的频率范围内,它可以将输出电压和电流的下限降低,如果图-1的箭头所示。降低后将会达到图-2所示的范围,输出电压和电流的下限几乎可以到达零,极大的提高了驱动电源的适应性。
 
3. LLC与LCC拓扑和一些输出特性
 
图-3和图-5分别是LLC和LCC的拓扑图,LCC拓扑相对LLC只是将于负载并联的电感换成电容,最后是由一个电感,一个串联的电容,一个与负载并联的电容构成。
图-4和图-6分别是LLC与LCC的输出电流随频率的变化曲线,不同曲线代表不同负载电阻条件。 
 

 
两图中虚线是恒流轨迹线,当负载电阻变化时,工作频率需要做相应的变化使得电流保持稳定不变,从图-4中可以看出,采用LLC拓扑实现恒流输出时,不同负载线之间的间隔较大,意味着频率变化较大。而从图-6中可以看出,采用LCC拓扑实现恒流输出时,不同负载线之间的间隔比较紧密,意味着频率变化较小。也就是说,LCC拓扑实现恒流时,频率随负载变化的范围比LLC的要小很多。
同样可以做类似分析,当固定输出电压时做调光应用,LCC同样可以比LLC实现更小的频率变化范围,而且电流调节深度更深。
另外输出短路的性能对驱动电源来说也是一个非常重要的指标,对LLC拓扑来说,负载电阻减小至短路时,由于其与Lm并联,谐振腔阻抗的感性部分将会减弱,容性将会增强而容易进入容性区,导致开关管容易出现硬开关(在最低工作频率小于谐振频率时)。而对LCC拓扑来说,负载电阻减小至短路时,由于其与Cp并联,谐振腔阻抗的容性部分将会减弱,感性将会增强,电路仍然工作在安全的感性区。LCC的最小工作频率会设计大于(甚至远大于)串联电感和串联电容的谐振频率以保证电路工作在感性区实现ZVS,输出短路的时候,频率会减小,但会被限制在最小工作频率。通过合理地设计谐振腔,短路电流可以做到稍大于额定输出电流,比如110%-120%。
从图-6可以看到,存在着某一个频率点,这个频率是谐振电感与两个电容都是串联时的谐振频率,不同负载电阻变化时,电流会汇聚在一个固定点。说明如果电路工作在这个频率时,输出电流无需电流采样作为反馈而自然实现恒流。利用这个特点,可以省略电流采样和反馈电路,使得整体电路更具有成本竞争性,甚至可以与“PFC+反激”的拓扑竞争,使其有竞争力的功率应用范围变得更广,小到30W,大到300W。
 
4. 实例
这里采用英飞凌的高集成度控制器ICL5101来实现一个120W的LCC恒流LED驱动电源.
图-7是LCC拓扑结构,采用次级电流采样做恒流反馈,并能实现0-10V调光的示意电路。PFC开关管采用了英飞凌的高性价比P6系列CoolMOSTM IPD60R190P6,LCC开关管采用英飞凌针对消费市场的低成本CE系列CoolMOSTM IPD60R650CE。两个型号均为TO-252贴片封装,无散热器,整体电路非常简洁。
图-8是省略次级电流采样反馈的示意电路,工作在固定频率,整体电路更加精简,整机成本可以与“PFC+反激”拓扑竞争。考虑到效率等因素,整体成本甚至更低。
 

 
作为说明,这里对有次级电流反馈的,采用图-7所示电路形式的实例做了实际测试。
这个实例的输出电压范围是20-80V,如果保证次级Vcc的供电,实际输出电压下限可以更低;输出电流范围是0mA-1.5A。
表-1是输出电流与频率在不同输出电压条件下的数据,图-9是根据此数据画出的曲线。整个输出电压(20-80V),输出电流(0.01-1.5A)范围内,频率的变化范围也只有80kHz左右的变化。特别是恒流在最大电流时,频率的变化范围只有几kHz,恒定电压在80V调光时,频率范围是39kHz左右。
 
 
在230Vac的输入条件,80V、1.5A的条件下得到最高的效率93.1%。详细数据如表-2和图-10所示。表-3是全电压范围下的满载效率和纹波电流数据。可以看出纹波电流的表现也很优秀,峰-峰值小于2.5%,都在70mA以下。
另外,ICL5101的THD和PF性能也很出色,详细数据分别如图-11和图-12所示。100%负载下,THD可低于5%。甚至在50%负载及277Vac条件下,THD小于10%,远低于EN61000-3-2 class C 要求。
 

 
最后是短路电流,实测值是1.7A,比较接近满载电流1.5A,这也是LCC比较LLC的主要优点之一。
5. 结论
 
LCC拓扑可以在较窄的频率变化范围内,实现极宽的输出电压及电流调节范围。基于英飞凌单芯片集成“PFC+半桥谐振”控制器ICL5101,可以很容易地实现高效率、低THD和高PF值。集成的控制IC,还可以大幅度简化电路,减少元器件数量。并且ICL5101提供了无次级电流采样反馈做恒流的选项,使系统变得更紧凑,该IC所有工作参数均可通过简单的外围电阻进行调节,是实现可靠的配置设计的理想选择。全面的保护功能,包括容性模式保护和可调节的外部过热保护,加强了故障情况检测,提高系统的可靠性。
 

关键字:驱动器  电流  电阻

编辑:王凯 引用地址:http://www.eeworld.com.cn/LED/article_2016090812072.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:PI推出高性能可控硅调光LYTSwitch-7 LED驱动器IC
下一篇:Diodes推出集成30V MOSFET和肖特基二极管的可编程调光LED驱动器

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

当今LED驱动器所面临的困难

在LED技术出现之前,大多数照明应用都是根据使用的灯泡类型和耗电量来定义的,但LED改变了这一点。今天,同样的基本固态技术适用于低、中、高功率照明应用,提供更高的能效和更好的亮度。 在高功率细分市场,如荧光灯管、路灯和泛光照明的标准嵌入式灯具,以及其他形式的户外照明,节省的电力可能是巨大的。当考虑到连接方便性和输出电平可调时,LED照明的业务案例就很难被取代了。由于高能效,大多数LED照明应用可以小于100 W的功率级解决,这是非常重要的,因为它直接影响到所需的电源转换器、LED控制器和LED驱动器拓扑结构。 驱动器要求 从根本上说,除了白炽灯泡(直接采用交流电源运行)以外,大多数灯都需要某种电源转
发表于 2018-12-20
当今LED驱动器所面临的困难

东芝推出双H桥驱动器IC系列的新产品 TC78H653FTG

东芝电子元件及存储装置株式会社(“东芝”)今天宣布,面向直流有刷电机和步进电机推出双H桥[1]驱动器IC系列的新产品“TC78H653FTG”,该新品可提供移动设备、家用电子产品及USB驱动器等干电池供电设备所需的低电压(1.8V)和大电流(4.0A)[2]。 近年来,随着物联网技术的不断发展和无线技术的日益广泛使用,人们对可通过智能手机等工具进行远程操控的应用需求不断提升,因此由电池供电的电机控制需求也随之上升。该趋势将推动人们对支持1.8V低电压(2块0.9V的电池,尽管初始电压为1.5V、1.2V等,可通过放电将其电压降低至0.9V)驱动设备的驱动器IC的需求。 此前,主流设备都是采用由双极晶体管构建
发表于 2018-12-13
东芝推出双H桥驱动器IC系列的新产品 TC78H653FTG

Trinamic推出推出高度紧凑步进电机控制器和驱动器IC

通过TMC5161,Trinamic用集成电机控制器和驱动器扩展了其完全集成的cDriver™IC,该电机控制器和驱动器适用于高达3.5A RMS和8 ... 40V的2相步进电机。 在2018年初成功推出TMC5160后,TRINAMIC运动控制现宣布推出TMC5161。这款cDriver™解决方案是一款易于使用的构建模块,具有强大的集成MOSFET驱动级和完整的运动控制功能,包括创新的电流调节。 “TMC5161是一款高度紧凑的步进电机控制器和驱动器IC,采用Nema 17和Nema 23电机,具有最低功耗和最高动态性能的功率级。它确保绝对无噪音运行,并结合最高效率和最佳电机扭矩。高集成度,高能效和小巧
发表于 2018-12-10

elmos推出最新电机驱动器和LED控制解决方案

半导体技术系统解决方案供应商德国elmos公司日前宣布推出最新电机驱动器解决方案和LED控制器IC产品,并在刚刚闭幕的慕尼黑电子展期间展示。截至目前, elmos已向全球客户交付了超过5亿个电机驱动器芯片。除此之外,该公司还为LED尾灯提供具有特殊专利的热分配解决方案。E523.06是一款用于无刷直流电机的系统级单芯片方案,它用于12V汽车电池系统,芯片集成了MOSFET门极驱动器与一块16位的CPU芯片组成,最多可控制3个半桥NMOS,可以驱动有刷或无刷直流电机以及其他负载。该CPU架构及电机外设驱动器均进行过优化,适合用于单取样电阻的矢量控制FOC方案(Field Oriented Control)。该IC可计算出电机转子位置
发表于 2018-11-26
elmos推出最新电机驱动器和LED控制解决方案

PI全面进入电机驱动市场,推出全新BridgeSwitch驱动器

近日,专注于高压集成电路高能效电源转换领域的Power Intergration(PI)宣布进入电机驱动器市场,并推出首款BridgeSwitch集成半桥电路(IHB)的电机驱动器IC产品。该产品继承了PI一直以来优秀的产品基因,并加入了一些对于电机驱动独特的理解。如今的PI官网上,已经展现出了四个产品线,这也就意味着电机驱动正式成为PI旗下一个重要板块。PI资深技术培训经理阎金光表示,电源是功率转换应用,而电机驱动也是功率转换,两者有很多想通性,这也是为何大部分电源管理公司都有电机驱动相关产品的原因。PI资深技术培训经理阎金光据统计,目前全社会约有一半以上的耗电量发生在电机领域,因此如何把电机设计得更节电,是企业同时也是全社会
发表于 2018-11-19
PI全面进入电机驱动市场,推出全新BridgeSwitch驱动器

增强安全性,简化设计—意法半导体的4A双通道栅极驱动器

STGAP2DM栅极驱动器是意法半导体的 STGAP2系列电隔离驱动器的第二款产品,集成了低压控制和接口电路以及两个电隔离输出通道,可以驱动单极或双极型晶体管的栅极。 STGAP2DM内部额定隔离电压高达1700V,有助于增强安全性,简化系统设计,节省物料清单成本和电路板空间。两个26V轨到轨输出具有4A栅极驱动能力,可确保工业电机驱动器和大功率变频器有强大的性能。STGAP2DM还非常适用于充电器、电焊机、电磁炉以及通用电源和电源转换器。 为简化系统设计,提高系统可靠性,STGAP2DM内置全方位保护功能,包括关断和制动专用的引脚、欠压锁定(UVLO)和防止同时双向输出高电平的互锁保护功能,以及过热关断。通
发表于 2018-11-15
增强安全性,简化设计—意法半导体的4A双通道栅极驱动器

小广播

颜工专栏

LED专区

现任华润矽威科技(上海)有限公司市场部经理/高工,上海市传感技术学会理事、副秘书长。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved
pt type="text/javascript" src="//v3.jiathis.com/code/jia.js?uid=2113614" charset="utf-8">