关于LED照明产品色彩质量中色彩清晰度的定性研究

2015-03-15编辑:探路者 关键字:LED照明  色彩质量
人类的照明技术从第一个灯泡发明到现在已经经过了135年的发展,光源的种类也从白炽灯、荧光灯、气体放电灯发展到新一代的LED照明光源。照明技术的发展有三个重要的指标,第一个是光效,第二个是寿命,第三个是显色指数。对于前两个个指标来说,随着照明技术的发展不断提高的,但是第三个指标显色指数并没有随着照明计算的发展而不断提高,主要原因是受限与显色指数这个指标的理论定义。

  国际照明委员会CIE对于显色性CR(colorrendering)的定义是[9]:“与标准的参考光源相比较,一个光源对物体颜色外貌所产生的有意识和无意识的效果”。照明行业目前只有一个普遍接受的评价显色性的方法--显色指数CRI(colorrenderingindex),这个评价方法是通过一些科学家与光源制造企业共同努力下,在1960年提出。CRI基于“测试样品色彩位移法”,比较样品颜色在参考照明体和测试光源下的色差来评价光源的显色性,即色彩“真实性”或者称之为“自然度”[1]。显色指数中的“标准的参考光源”在5000K以下是黑体辐射的光谱,5000K以上是平均日光的光谱。白炽灯的发光机理属于黑体辐射,那么很显然,无论照明技术如何发展,白炽灯的显色性或显色指数都是最高的,其他先进的照明技术只要其光谱形态偏离参考光源的光谱其显色指数就将下降。

  P.J.Boum在1947年描述了日光作为理想的照明光源的几个原因:“在日光的照射下物体的颜色(1)有非常丰富的颜色,(2)能够轻易的分辨颜色的细微差异,并且(3)使我们周围的物体的颜色看起来非常自然”[2]。在Bouma的描述中我们能够知道,除了CR的概念外,还有其他概念描述光源的“色彩质量CQ(colorquality)”[3],例如色彩清晰,色彩丰富等。

  本文调研了国内外关于照明光源的色彩清晰指标的相关研究现状,并借鉴相关研究方法进行视觉工效实验,分别对显色指数和色温与色彩清晰的关系进行了定性分析。实验结果表明,高色温的白光LED照明产品比低色温的有更加高的色彩分辨能力而且主观感受色彩更加清晰,并且显色指数与色彩清晰度相关性不大,因此不能用显色指数来评价LED照明光源的色彩清晰度。

  一、国内外研究现状

  色彩清晰可以分为两个方面,第一个为照明光源对于观察者分辨颜色能力的影响,第二个为照明光源对于观察者在此整体光环境下色彩清晰的主观感受。国内外许多研究者们对于LED照明光源的色彩分辨进行了许多研究工作。

  法国的研究者ElodieMahler[4]等人对单色的LED组成的白光光源的色彩分辨能力进行了研究。他们选用的测试光源是RGB(红、绿、蓝LED)、RGBA(A为琥珀色)、WR(两个冷白色荧光粉LED和红色LED)、WWARGB(两个冷白光、两个暖白光荧光粉LED和琥珀色、红、绿、蓝LED组合),色温保持在4000±40K,照度在660±9lux,并且选用卤钨灯加滤光片作为参考光源。他们使用自制的C32色棋作为排序实验的工具。其结果显示RGB型的色分辨能力最差,WR和WWARGB的色分辨能力比参考光源更好。

  美国的MarkS.Rea[5,6]等人推荐使用CRI作为色彩自然的评价指数,GAI作为色彩鲜艳的评价指数,FSCI作为色彩分辨的评价指数,为此他们进行了许多相关的视觉实验。在一个实验中他们选用了5种白光LED和2种荧光灯,并且分为暖白、冷白、混合色温组,并且设置两种不同的照度。被试者在这些光源下进行FM100-huetest的色彩分辨能力测试,实验结果表明色彩分辨能力与照度有很大关系,照度提升色彩分辨能力也相应提高,同时结果表明CRI与色彩分辨没有相关性,但是GAI和FSCI与色彩分辨有较好的相关性。

  目前的对于光源照明色彩质量的视觉心理实验的实验设计方法为:保持光环境桌面照度相同,并且将测试光源按照相近的色温分组。使用FM100色棋测试分析光源光谱对视觉色彩分辨能力的影响。  二、视觉工效试验

  为了研究LED照明光源的光谱与色彩清晰之间的关系,本论文设计了两个实验,第一个通过Farnsworth100色相测试方法,评估在不同光源光谱下,人眼辨色能力的变化。第二个实验通过主观体验评价法,实验中,被试者在暗室中观察给定的光环境,然后根据标准化量表回答其主观感受。

  实验一共选用6个LED光源,均为蓝光LED芯片激发荧光粉方式产生白光。为了得到人眼实际观察到的视场的光源光谱,通过分光辐射亮度计测量光箱内桌面中心反射的光谱,测量仪器为已校准的KonicaMinoltaCS2000,光箱内水平照度使用TES1330A照度计测量,光源相关参数见表1。光源1到3为4000K色温组,4到6为8000K色温组,其中每个色温组中,还分为显色指数70,80,90三个等级.本论文一共25位被试者参与视觉心理实验,其中11人完成FM100色棋试验,25人完成主观体验评价实验,被试者平均年龄为20.7岁,年龄范围19至25岁。

  1.Farnsworth100色相测试实验

  在以往的研究中已经发现照度的变化对于人眼色彩分辨影响非常大,因此在实验过程中,通过TES1330A照度计实时测量照度,使其保持500lx,因此实验仅考虑色温和光谱的差异所产生的人眼色分辨能力的变化。

图1 在光箱照明光环境中进行色棋排序实验

  被试者首先在第一个测试光源下进行色棋排序练习,至少完成一次完整的测试,然后正式开始实验。开始排序前,被试者要经过15分钟充分适应当前的照明环境,在此期间被试者只能观察光箱内的照明环境,不能被其他光源干扰。待适应完全,则开始进行排序测试。实验完成后,更换为下一个照明光源,被试者在此环境下适应当前的照明环境,此时实验人员记录实验结果,并且重新打乱色棋。被试者完成两个光源下排序后休息30分钟,然后继续进行试验。

图2 六种光源下被试者色棋排序平均错误得分

  实验数据如图2所示,可以看出色棋排序的错误分数在4000K色温下比8000K相关色温下高,因此色温的提高能够提高人眼的色彩分辨能力。在8000K组中显色指数80比显色指数70的光源的色棋排序得分更高,因此可知显色指数并不一直与色彩分辨能力相关。  2.色彩清晰主观感受评价实验

图3 照明色彩清晰主观评价对比选择实验场景

  为了让被试能够对于光环境的色彩清晰进行评价,因此需要为被试者呈现一个仿真的光环境,所以在光箱内摆放了仿真的水果、罐装饮料、杂志、MCC色卡。本实验使用全部6个COB光源,分为4000K组、8000K组,实验中两个光箱内分别从两个色温组中选择一个光源点亮,被试者将对比两边光环境的色彩清晰主观感受,并选择主观感觉色彩更加清晰的光环境。一个光源需要与三个光源不同对比,并且重复三次,因此一个光源将进行9次对比,25位被试者进行对比,因此一个光源将进行9*25=225次对比,将被选择的次数除其总共对比的次数得到被试者对比选择评价百分比,实验结果如图4所示。从试验结果可以发现高色温的光源在进行色彩清晰的主观对比中,几乎所有的被试者均选择高色温的光源,而与显色指数CRI的关系却不大。

图4 白光LED色彩清晰主观对比选择试验结果

  三、结论及展望

  本论文进行的两个实验可以得到如下两个定性的结论:第一、高色温的白光LED照明产品比低色温的有更加高的色彩分辨能力和主观感受色彩清晰度;第二显色指数与色彩清晰度相关性不大,因此不能用显色指数来评价LED照明光源的色彩清晰度。

  国际照明委员会CIE的技术报告177:2007“白光LED的显色性”中指出“CRI对于包含LED光源的一系列光源进行显色评价时得到的结果不能令人满意”,并且技术报告中还指出,“应该尽快研究出一种新的显色性评价指数或者一组评价指数替代现有的CRI”[3]。根据本文的研究结果,照明光源的色彩质量是多方面的,无法通过一种评价模型去评价,未来应该建立一个多评价指数的色彩质量评价框架,系统、完整的评价白光LED照明光源的色彩质量属性,为LED照明提供科学客观的评价标准。

关键字:LED照明  色彩质量

来源: 互联网 引用地址:http://www.eeworld.com.cn/LED/2015/0315/article_11829.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:LED芯片的制造工艺流程及检测项目分析
下一篇:为何行车中LED日行灯“必不可少”?

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

OLED照明应用范畴广 室内场域将优先导入

OLED照明是一种新兴的固态照明技术,最大的特色是其无眩光(Non-Glaring)的特性,能够长期在黑暗中照明,而不会让眼睛产生疲劳感。尽管短时间内尚不会出现大规模的成长幅度,然而预计在2027年OLED照明市场将有望成长至25亿美元,有望为全球照明市场开创新的局面。IDTechEx顾问主管Khasha Ghaffarzadeh指出,照明市场的结构非常广泛,充满了各种技术组合与不同的客户需求。包含住家、办公场所、工业厂区、商店、户外环境等等都对于能源效率、使用寿命、光照强度、色温与设计有不同程度的需求。若依照场域划分,会看到旅馆与商店等室内应用场域将首先导入OLED照明。有鉴于BMW于2015年便发布了将在车灯导入OLED照明
发表于 2018-05-22

LED用于工业照明有哪些实例和哪些主要优势?

LED正在风靡全球,小到厨房浴室,大到摩天大楼和城市街道,随处可见。 伊顿照明事业部Metalux产线营销经理Steve Johnson在本文中简要地介绍了LED用于工业照明的一些实例、优势以及考虑因素。  LED用于工业照明有哪些实例? 工业设施有一系列的广泛应用,根据特定空间的需求需要不同的照明标准。 ▲ 比如在仓库和配送中心。这些空间需要多种光分布的灯具,以均匀地照亮通用的大面积区域,同时又要在高货架的过道上提供良好的垂直呎烛光。 ▲ 比如在制造工厂。这些空间需要精确的光学控制,以提高可视性和安全性,并将维护工作量降到最低;同时制造工厂还需要耐用性好的灯具,以承受
发表于 2018-03-25
LED用于工业照明有哪些实例和哪些主要优势?

通用照明形态趋于固化:OLED照明成下一个破局者

  我们都知道,通用照明经过百余年的演进和发展,从白炽灯、卤素灯、荧光灯到LED,照明产品形态方面已经趋于成熟。在本次法兰克福照明展上,我们也明显发现,不同厂商产品也是差别不是很明显,近些年火热的灯丝灯产品也是大同小异。下面就随嵌入式小编一起来了解一下相关内容吧。  在植物照明方面,目前还处于前期推广阶段,本次展会上欧司朗光电半导体和三星等企业也进行了重点展示。但是总体而言,进行植物照明展示的企业并不多。植物照明  而在与企业交流过程中,欧司朗光电半导体大中华区通用照明销售总监邵嘉平也认为,LED照明在室内外、商业、景观、办公及工业等应用领域取得了广泛应用,虽然在产品形态方面趋于固定化,但是在光效、以人为本等方面仍然不断向前
发表于 2018-03-22
通用照明形态趋于固化:OLED照明成下一个破局者

通用照明形态趋于固化:OLED照明成下一个破局者

  我们都知道,通用照明经过百余年的演进和发展,从白炽灯、卤素灯、荧光灯到LED,照明产品形态方面已经趋于成熟。在本次法兰克福照明展上,我们也明显发现,不同厂商产品也是差别不是很明显,近些年火热的灯丝灯产品也是大同小异。下面就随嵌入式小编一起来了解一下相关内容吧。  在植物照明方面,目前还处于前期推广阶段,本次展会上欧司朗光电半导体和三星等企业也进行了重点展示。但是总体而言,进行植物照明展示的企业并不多。植物照明  而在与企业交流过程中,欧司朗光电半导体大中华区通用照明销售总监邵嘉平也认为,LED照明在室内外、商业、景观、办公及工业等应用领域取得了广泛应用,虽然在产品形态方面趋于固定化,但是在光效、以人为本等方面仍然不断向前
发表于 2018-03-21
通用照明形态趋于固化:OLED照明成下一个破局者

OLED照明会成为下一个智能照明的风口吗?

我们都知道,通用照明经过百余年的演进和发展,从白炽灯、卤素灯、荧光灯到LED,照明产品形态方面已经趋于成熟。在本次法兰克福照明展上,我们也明显发现,不同厂商产品也是差别不是很明显,近些年火热的灯丝灯产品也是大同小异。 在植物照明方面,目前还处于前期推广阶段,本次展会上欧司朗光电半导体和三星等企业也进行了重点展示。但是总体而言,进行植物照明展示的企业并不多。 植物照明 而在与企业交流过程中,欧司朗光电半导体大中华区通用照明销售总监邵嘉平也认为,LED照明在室内外、商业、景观、办公及工业等应用领域取得了广泛应用,虽然在产品形态方面趋于固定化,但是在光效、以人为本等方面仍然不断向前发展。 LG
发表于 2018-03-21
OLED照明会成为下一个智能照明的风口吗?

LED照明产业日趋成熟,飞利浦、欧司朗等接下来做什么?

在经过几年的低价竞争以及行业整合之后,LED照明产业已经步入成熟期。产品性价比大幅提升,应用市场渗透率提高,传统应用市场逐渐饱和。企业的优势竞争力正在从企业规模和产品成本逐渐向产品和技术能力转移,产品的附加价值作用日渐凸显。 物联网的崛起,带动LED照明走向小型连网的高值化数字照明。智能系统可以通过各种传感器收集用户、环境和其他信息,并进行数据分析,再进行设备调节。融合个人化、以人为本的智慧照明正在成为未来产业发展的重点。 2017年,随着技术发展、产品成熟、厂商积极推动、智慧照明相关概念普及,全球智慧照明市场进入高速发展阶段,市场规模接近46亿美元,年成长率达到95%。未来几年预计市场会将持续成长
发表于 2018-03-01
LED照明产业日趋成熟,飞利浦、欧司朗等接下来做什么?

小广播

颜工专栏

LED专区

现任华润矽威科技(上海)有限公司市场部经理/高工,上海市传感技术学会理事、副秘书长。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved