datasheet

人工智能芯片的DNA

2018-10-16来源: EEWORLD 关键字:AI

过去十年间,几项技术的进步使人工智能 (AI)成为最令人振奋的技术之一。2012年,Geoffrey Everest Hinton在Imagenet挑战赛中展示了他的广义反向传播神经网络算法,该算法使计算机视觉领域发生了革命性变化。然而,机器学习理论早在2012年之前就有人提出,并且Nvidia GTX 580图形处理器单元等微处理器使这一理论得以实现。这些处理器具有相对较高的内存带宽能力且擅长矩阵乘法,可将该神经网络模型的AI训练时间缩短至大约一周。理论与算法的结合开启了新一代技术进步,带来了与AI相关的全新可能性。本文概述了人工智能设计新时代及其多样化处理、内存和连接需求。

 

人工智能剖析

 

我们将神经网络定义为深度学习,它是机器学习及人工智能的一个子集,如图1所示。这是一个重要的分类,深度学习该子集改变了芯片系统架构设计。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图1:人工智能采用深度学习算法模仿人类行为

 

深度学习不仅改变了芯片架构,而且催生了半导体市场的新一轮投资。深度学习算法模型是研发和商业投资的热点,例如卷积神经网络 (CNN)。CNN一直是机器视觉的主要焦点。递归神经网络等模型因其识别时间的能力而在自然语言理解中得以应用。

 

人工智能的应用

 

深度学习神经网络应用于许多不同的场景,为使用它们的人提供了强大的新工具。例如,它们可以支持高级安全威胁分析、预测和防止安全漏洞,并通过预测潜在买家的购物流程来帮助广告商识别和精简销售流程。

 

但AI设计并未局限于数据中心,诸如用于物件和人脸识别的视觉系统、用于改进人机接口的自然语言理解以及周围环境感知等许多新功能可基于传感器输入的组合而使机器理解正在发生的活动。这些深度学习能力已融入到不同场景所需的芯片设计中,包括智能汽车、数字家庭、数据中心和物联网 (IoT),如图2所示。

 

图2:AI处理能力已结合到大量应用中

 

手机利用神经网络实现上述多种AI功能。手机可运行人脸识别应用、物件识别应用、自然语言理解应用。此外,它在内部使用神经网络进行5G自组织,因为无线信号在其他介质、不同的光谱上会变得更密集,并且所传输的数据有不同的优先级。

 

人类大脑

 

最近,深度学习通过数学和半导体硬件的进步变得可行。业界已开展多项举措,在下一代数学模型和半导体架构中更好地复制人脑,这通常被称为神经形态计算。人类的大脑可以达到难以置信的高效率,但技术在复制人类大脑等方面才刚开始触及皮毛。人类大脑包含超过1 PB (Petabyte=1024TB)的存储空间,相当于大约540万亿个晶体管,且功率小于12瓦。从这点来说,复制大脑是一个长远的目标。然而,ImageNet挑战赛已从2012年的第一个反向传播CNN算法发展到2015年更高级的AI模型ResNet 152,市场正在快速发展,新的算法层出不穷。

 

AI设计挑战

 

融合深度学习能力的芯片架构促使了多项关键技术的进步,从而达到高度集成的解决方案和更通用的AI 芯片,包含专用处理需求、创新内存架构和实时数据连接。

 

   专用处理需求

 

融合神经网络能力的芯片必须同时适应异构和大规模并行矩阵乘法运算。异构组件需要标量、矢量DSP和神经网络算法能力。例如,机器视觉需要独立的步骤,每一步都需要执行不同类型的处理,如图3所示。

 

 

 

 

 

图3:神经网络能力需要独特的处理

 

预处理需要更简单的数据级并行性。对所选区域的精确处理需要更复杂的数据级并行性,可以通过具有良好矩阵乘法运算能力的专用CNN加速器有效地处理。决策阶段通常可以通过标量处理的方式来处理。每个应用都是独一无二的,但很明显的是,包括神经网络算法加速的异构处理解决方案需要有效地处理AI模型。

 

   创新内存架构

 

 

 

AI模型使用大量内存,这增加了芯片的成本。训练神经网络要求达到几GB甚至10GB的数据,这就需要使用DDR最新技术,以满足容量要求,例如,作为图像神经网络的VGG-16在训练时需要大约9GB的内存;更精确的模型VGG-512需要89GB的数据才能进行训练。为了提高AI模型的准确性,数据科学家使用了更大的数据集。同样,这会增加训练模型所需的时间或增加解决方案的内存需求。由于需要大规模并行矩阵乘法运算以及模型的大小和所需系数的数量,这就要求配备具有高带宽存取能力的外部存储器及新的半导体接口IP,如高带宽存储器 (HBM2)和衍生产品 (HBM2e)。先进的FinFET技术支持更大的芯片SRAM阵列和独特的配置,具有定制的存储器到处理器和存储器到存储器接口,这些技术正在开发中,为了更好地复制人脑并消除存储器的约束。

 

AI模型可以压缩,确保模型在位于手机、汽车和物联网应用边缘的芯片中受限的存储器架构上运行所必需的。压缩采用剪枝和量化技术进行且不能降低结果的准确性,这就要求传统芯片架构(具有LPDDR或在某些情况下没有外部存储器)支持神经网络。随着这些模型的压缩,不规则的存储器存取和计算强度增加,延长了系统的执行时间。因此,系统设计人员正在开发创新的异构存储器架构。

 

   实时数据连接

 

一旦AI模型经过训练并可能被压缩,就可以通过许多不同的接口IP解决方案执行实时数据。例如,视觉应用由CMOS图像传感器支持,并通过MIPI摄像头串行接口 (CSI-2)和MIPI D-PHY IP连接。LiDAR和雷达可通过多种技术支持,包括PCI Express和MIPI。麦克风通过USB、脉冲密度调制 (PDM) 和I2S等连接传输语音数据。数字电视支持HDMI和DisplayPort连接,以传输视频内容,而这些内容可通过神经网络传输后得到改善,实现超高图像分辨率,从而以更少的数据生成更高质量的图像。目前,大多数电视制造商正在考虑部署这项技术。

 

混合AI系统是另一个预计会大量采用的概念。例如,心率算法通过健身带上的AI系统可以识别异常,通过将信息发送到云端,对异常进行更准确的深入AI神经网络分析,并加以提示。这类技术已经成功地应用于电网负载的平衡,特别是在电线中断或出现意外重负荷的情况下。为了支持快速、可靠的网络与云端连接,上述示例中的聚合器需要以太网连接。

 

消除瓶颈

 

尽管复制人类大脑还有很长的路要走,但人类大脑已被用作构建人工智能系统的有效模型,并继续由全球领先的研究机构来建模。最新的神经网络试图复制效率和计算能力,芯片架构也开始通过紧密耦合处理器和内存来复制人类大脑。ARC子系统包括AI及其APEX扩展和普遍存在的RISC架构所需的处理能力。子系统将外设和存储器紧密耦合到处理器,以消除关键的存储器瓶颈问题。

 

用于AI的DesignWare IP

 

AI是最令人振奋的技术之一,特别是深度学习神经网络,通过结合神经网络算法的创新以及高带宽、高性能半导体设计的创新而飞速发展。

 

新思科技正在与世界各地细分市场中领先的AI 芯片供应商合作,提供采用经过验证的可靠IP解决方案,帮助他们降低芯片设计风险,加快产品上市速度,并为AI设计人员带来关键的差异化优势。

 

专用处理需求、创新内存架构和实时数据连接构成了人工智能芯片的DNA,面对AI设计挑战,新思科技提供了许多专业处理解决方案来消除存储器瓶颈,包括存储器接口IP、带有TCAM和多端口存储器的芯片SRAM编译器等,同时提供了全面的实时数据连接选项。这些IP解决方案是下一代AI设计的关键组件。

 

关键字:AI

编辑:muyan 引用地址:http://www.eeworld.com.cn/IoT/2018/ic-news10164432.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:瑞萨独家的DRP技术以低功耗实现了出色的实时图像处理
下一篇:Bridgetek推出人机介面开发模块

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

依图医疗亿元绘制“AI防癌地图” 以AI应用提升医疗机构服务供给能力

”对于创业公司,第一要务是活下去,做这件事情有些忐忑。但是这是一个很重要的事情,量力而为,努力做好。”依图医疗总裁倪浩说。11月9日,医疗人工智能企业依图医疗在北京宣布启动“AI防癌地图”项目,计划在未来5年内投入1亿元项目资金,联合数百家医疗机构,覆盖19个省市自治区,以AI应用提升医疗机构服务供给能力。倪浩表示:“随着医疗AI在医疗机构的广泛应用, AI正在成为医生的助手及第二大脑。依图医疗希望通过持续、高效的投入,覆盖高致死率肿瘤的高发地区,通过提升医疗供给侧的服务能力,让更多癌症患者能够早期发现,早期治疗,提升生存年限及生存质量,不断扩大中国人的健康版图。”依图科技成立于2012年,主要从事人工智能创新性研究,是一家偏技术
发表于 2018-11-12
依图医疗亿元绘制“AI防癌地图” 以AI应用提升医疗机构服务供给能力

再出手!大基金、武岳峰等入股瑞芯微,后者在“IoT与AI”赛

,进军平板电脑市场。即便在高通、英特尔的夹击下,中国平板芯片市场瑞芯微依然做到了三分天下有其一的成绩。继承平板优势,瑞芯微在很多细分领域都逐渐突破。例如,2017年瑞芯微芯片成功打进三星笔记本供应链,成为国产芯片第一个嵌入到笔记本电脑的厂商。在完成一定的积累后,近两年瑞芯微开始将战略方向瞄准“IoT与AI”领域。目前公司在IoT领域已经覆盖消费电子、家居、汽车、零售等方方面面,并已经取得了一些成绩。例如,目前市面上电梯口、机场等户外大屏广告机,有80%用的都是瑞芯微的芯片。在AI领域,目前瑞芯微AI芯片级的解决方案已经实现产品的商用化落地。根据市场研究公司Compass Intelligence的统计,在全球前20名的AI芯片企业
发表于 2018-11-12
再出手!大基金、武岳峰等入股瑞芯微,后者在“IoT与AI”赛

河源国际手机创新创业大赛华东赛区圆满结束,5G、AI应用表

来近期最强的换机动力,面对5G和物联网市场,公司将以更加巨大的研发和市场投入,来迎接射频前端的爆发增长黄金时代。在回答评委所提出的,如何能从如狼似虎的竞争对手中“跑出来”时,倪胜谈到了两个点,其一是扼杀成本,前期可能会采取不盈利的方式打入市场,另一个点是5G射频前端有一定的门槛,大公司会认为射频前端的市场并不能满足自身需要的市场规模,而小公司又没有足够强劲的实力。除了5G之外,AI相关的项目也表现亮眼,其中一个项目是智能化手机研发测试系统,由于厂商研发测试部门经常有一些困扰,例如手工和重复测试工程多、测试规模小、强度低、软硬件综合测试少等,新的智能化测试系统将会帮助测试部门缩减约三分之二的人力并大大减少人员工作量,提高测试效率
发表于 2018-11-10
河源国际手机创新创业大赛华东赛区圆满结束,5G、AI应用表

AI等技术能为治疗老年痴呆做些什么?

11月7日,广州市黑格智造信息科技有限公司(以下简称“黑格科技”)发布了桌面级别的3D打印机Ultracraft D-OS(以下简称“D-OS”),与D-OS同时亮相的还有Ultracraft A2-OS(以下简称“A2-OS”)。A2-OS可以看做是黑格科技在2016年发布的第一款DLP(DLP,全称是Digital Light Processing,译作“数字光处理”)工业级3D打印机Ultracraft A2(以下简称“A2”)的升级版。A2、A2-OS、D-OS这三款3D打印机均可用于打印牙科产品。黑格科技创始人兼CEO桂培炎介绍,目前黑格科技已经向外投放了100多台A2,预计D-OS和A2-OS均可以在明年第一季度开始试用
发表于 2018-11-09

对AI芯片创业公司来说,哪些市场更容易规模化?

本文是创投观察系列的第131篇分享人:耐能CEO Albert一颗芯片需要百万级以上规模出货量才能收回成本,像英特尔、英伟达、高通等芯片巨头都是提供标准化产品给各行业客户来实现规模化。虽然AI芯片的趋势是软硬结合,但现在很多 AI芯片创业公司却成为系统集成商。芯片产生不了足够营收,通过系统集成项目来撑。对AI芯片创业公司来说,哪些市场容易规模商用AI芯片?AI芯片需要“软”到何种程度?首先,安防和自动驾驶领域对AI芯片创业公司是非常有挑战的。除手机外,安防是最清晰的AI芯片应用场景,多数创业公司扎堆投入,宣称各种参数碾压传统芯片巨头,然而最终落地商用的多是摄像机硬件以及安防平台、新零售等软件解决方案。创业公司如果
发表于 2018-11-09

中星微AI闪耀乌镇

  今日,第五届世界互联网大会在乌镇正式拉开帷幕。  中星微人工智能的最新产品AI视频处理器芯片“星光智能二号”摘得“世界互联网领先科技成果”,这不仅印证了中国互联网产业的腾飞动能是如何从研发前沿领域展开,也是中星微人工智能从“芯”开始,谱写中国芯人工智能发展篇章的又一重大里程碑事件。  世界互联网脉动看中国,中国互联网脉动看乌镇。转眼之间,这场互联网产业的盛会已经花落江南水乡第5个年头,见证了中国从科技行业的追赶者逐渐成长为驱动者。AI火,芯片难。AI从来都是科技大玩家的战场,而芯片研发则是要啃硬骨头的持久战役。中国的人工智能领域和芯片行业,从不缺乏期待与质疑之声的冰火两重天。但缺乏的是厚积薄发,初心向前的意志。  在这艰难漫长
发表于 2018-11-09
中星微AI闪耀乌镇

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved