datasheet

英特尔 FPGA:智能互联世界的加速器

2017-10-16 11:11:28来源: EEWORLD 关键字:智能互联世界  FPGA  5G  网络  无人驾驶

  层出不穷的智能应用不断挑战着人们想象力的极限,身边铺天盖地的报道时时刻刻地提示着智能世界已经来临。对,智能世界来了,随之而来的还有奔腾而来的数据洪流:


  到 2020年,

  平均每位互联网用户:1.5 GB流量/天

  自动驾驶汽车:4 TB 数据/天

  联网的飞机:5 TB 数据/天

  智能工厂:1 PB 数据/天

  云视频提供商:750 PB视频/天

  ……


  “到 2020 年,将会有 500亿个终端联网,远远超过目前的80亿,IP 的流量也将达到 2300 EP/年,” 英特尔可编程解决方案事业部副总裁兼客户体验事业部总经理 Rina Raman 强调,数据中心与终端互连所形成的循环,随着物联网的发展将会逐渐加速,因而网络就必须以更高的速度处理更多的数据,数据中心也需要做更为复杂的计算,以应对更为庞大的数据集,甚至嵌入式终端也需要做很多本地的计算。此外,数据中心还需应对一些更具挑战性的工作负载: 如大数据分析、机器学习等等。由此,循环中瓶颈与挑战一一出现。


 


  数据洪流中的瓶颈与挑战


  上述所提及的挑战与瓶颈,无论 5G 无线通讯、雷达与宇航、网络,还是云计算、智能城市以及自动驾驶,都身在其中。 


  5G 网络: 未来需要更大的带宽、更复杂的数字信号处理能力。英特尔 FPGA 能够帮助应对这些挑战,尤其在 5G 网络应用中,FPGA 可以加速 MIMO 天线的计算和基带的信号处理能力,解决安全及其他一些可能会制约发展的网络功能。


  雷达与宇航:雷达应用中,与安全相关的通讯,正在面临着一系列的挑战:其中包括波速成形、FFT与过滤器以及机器学习等算法方面的挑战。以往的解决方式是:通过更快的 CPU 或者更快的 DSP 芯片阵列 或者 ASIC 来应对,但是通过使用FPGA,设计人员可以加速数据处理、加速处理机器学习任务,让整个架构更加简单,同时开发环境也更加统一。


  网络方面:随着数据中心与终端良性循环的加速、物联网的不断发展,网络需要进行根本性的转型,其中包含本地网、城域网、骨干网、甚至数据中心。而转型的关键是:网络功能虚拟化,即将一些关键的功能(如交换、安全性、检测与报告等),从专用的硬件转移到数据中心的软硬件进行处理。正是在这样一个充满了不确定性和快速变化的环境中,FPGA 能够加速一些关键数据包的交换、检测以及安全任务的处理。


  无人驾驶: 必然会对计算性能有更多的需求,算法的不确定性还可能会出现计算的孤岛,每个孤岛都可能有自己本身的硬件和开发环境,这对制造商而言是不可持续的。FPGA 在本地计算和深度学习的推算应用中,能够发挥关键作用。同时,还可以通过 5G 连接,把汽车、其他车辆与高速公路基础设施和云实现连接。


  智慧城市:现代化的城市当中有很多计算孤岛正在出现,其中包括交通管理系统、照明管理系统、泊车管理系统和安全的摄像头,这些众多不同的系统由众多不同的厂家来生产,每个系统都有不同的架构,不同的开发环境,而且彼此之间没法实现数据共享。英特尔 CPU和 FPGA 就能取代这些专有的架构,提供本地计算、连接和分析的能力。


  云计算:在云的环境中,工作负载及其构成都会出现动态的变化,甚至某些工作负载所需要的性能即使 CPU 在合理的功耗水平之下也是难以实现的,所以需要一些特别的芯片或者是配上 GPU,专门处理并行的运算,可以装上网络加速器,处理协议和安全的流量分流,还可以配备视频解码器或 ASIC 专用的集成电路,用于搜索的加速和深度学习。但是,服务器上往往没有空间,也没有足够的功率支持放入所有芯片。所以,有一些云的服务提供商和数据中心的架构师就开始转向使用英特尔 FPGA,FPGA 和 Xeon  CPU连接,提供搜索、计算、加密、分组处理和机器学习的硬件加速。一旦发生变化,设计人员可以对FPGA进行重新的配置,满足更新的需求。


  FPGA : 对异构架构至关重要


  处理大量数据的增长!

  应对快速变化的新技术所带来的计算环境的变化!

  CPU 本身所具备的功耗!


  仅仅依靠计算平台同质的扩展,已远远没法满足上述的挑战要求,因而不同的异构架构组合成为必然。当今的硬件平台包括:CPU、FPGA 以及专用的加速器,其中 CPU 仍然是处理能力的核心引擎,再加上专用的加速器(ASSP和ASIC等),已然可以实现最好的计算效率。与此同时, FPGA 在其中也在越来越发挥着重要作用, 它就像一种先进的多功能的加速器,不仅能够带来最大的编程灵活性,支持高度差异化的产品,还可以在现场进行重新配置,虚拟加速任何数字的算法。FPGA也支持并行运算,其性能从吞吐量,实时速度到能耗,比 CPU 或 GPU 要优上 10 倍。此外 FPGA 还可以以更低的时延处理更大的数据,比传统在硬件产品上跑的基于软件的产品更快。也正因为 FPGA 既具有硬件性能,又具有软件可编程的能力,在异构计算的环境中日益变得重要。


  如下图所示,旁路加速可以把一些重度计算的数据功能转移到FPGA上面,这样可以释放处理器去处理其他运算。如果时延比较重要,还可以进行内建加速。这样通过FPGA的多功能性,可以带来更好的网络的存储和计算的加速。



  Rina 以FPGA 提升数据中心效率为例,展示了FPGA 如何在生活中应对实际的挑战的。


  首先面对的是:数据库的加速。SWARM64 可扩展数据加速器使用了英特尔最新的FPGA 大量处理一些并行的数据,实现了很好的吞吐量、能耗和更高的性能,无论在云端,还是在现场,它都可以支持任何的配置。可以看到:其实时数据分析能力是以前的5倍,数据仓储的能力是以前的2倍,存储压缩能力是以前的3倍。


  接下来要解决的难题是:基因测序。众所周知,基因测序的数据量大且复杂,如果分析能力跟不上,很多研究项目就会被迫推迟,因而影响整个医疗界的研究进展。英特尔和 Broad Institute 公司共同开发出了基因分析的软件工具包——GATK,主要是用于分析大吞吐量测序的数据。据悉,研究人员现在可以在过去三分之一的时间能够获得5倍的数据量,相当于15倍的提升。Broad Institute 的 Pair-HMM 算法提高了50倍,总业务流提高了 1.2 倍。


  另外一个实际难题是:存储 NVME OVER  FABRIC。Attala 希望利用英特尔 FPGA 重新设计和开发新一代的存储和网络的基础设施。数据在硬件里通过FPGA来进行处理和加速,然后进入到网络基础设施,相比之前的方案,使用 FPGA 的方案在读写速度的时延方面降低57-72%。因而, Attala的解决方案不仅软硬件结合的解决方案有很强的适应能力,而且也为云的服务提供商降低了运行成本。


  为了更好地支持智能互联世界的应用,英特尔提供的一系列的 FPGA 产品, 其中包括 Stratix 10 、Arria 10、Cyclone 10 和 Max 10。着眼于未来,Rina 透露英特尔下一代 FPGA的产品,英文名字叫 Falcon Mesa。这是使用了英特尔 10 纳米的制程技术、基于 FinFET 制程、也是英特尔第二代使用 HyperFlex 架构的产品,还是第二代基于EMIB(英特尔接口的规范)的异构的SIP。据悉,Falcon Mesa 也是 Altera 并入英特尔以后第一代使用了英特尔10纳米制程技术开发出来的产品。此外, 英特尔还提供了加速堆栈,用来助力开发人员轻松入门。




  智能互联世界的挑战日趋复杂,英特尔 FPGA 愿意参与其中,助力加速计算,更好地应对今天以及未来的数据需求。


关键字:智能互联世界  FPGA  5G  网络  无人驾驶

编辑:刘东丽 引用地址:http://www.eeworld.com.cn/FPGA/article_201710163757.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:美高森美和Tamba合作开发新型PolarFire器件
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

网友正在学习IC视频

推荐阅读
全部
智能互联世界
FPGA
5G
网络
无人驾驶

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源

夏宇闻老师专栏

你问我答FPGA设计

北京航空航天大学教授,国内最早从事复杂数字逻辑和嵌入式系统设计的专家。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved