高性能32位移位寄存器单元的设计

2011-07-08 14:39:42来源: 互联网
    1引言

  本文给出了一种可用于32位以上CPU执行单元的移位寄存器电路,并针对CISC指令集INTELX86进行了优化(由于RISC指令集中移位类指令实现比较简单,故没有在文中讨论);采用指令预处理的技术和通过冗余位,能很方便的实现带进位标志CF移位和设置CF位,并使得每条移位指令的平均执行速度为两个指令周期。它有效地提高了CPU对移位类指令的执行性能,并且作为一个基本的内核单元能很方便地移植到不同指令集(RISC或CISC)的CPU设计之中。 

  232位CPU中执行单元总体结构

  我们所设计的32位CPU的执行部分采用双总线结构,数据总线(Abus,Bbus)的宽度是32位。由于移位类指令如果用ALU进行实现的话,必然会耗费太多的CPU周期,为实现在一个指令周期内对32位数据进行任意位的移位操作,因此有必要在执行单元中设计专用硬件移位寄存器,在执行移位类指令时由它进行32位数据的移位。

  图1给出了32位CPU执行单元总体结构数据流结构简图,并省略了所有控制信号。图中Abus为双向32数据总线,Bbus为单向32位数据总线。由于考虑到要实现INTELX86系列所有的移位类指令(RCR,RCL,ROR,ROL等),所以移位寄存器在设计时采用双输入端,即实际该移位寄存器最大能实现64位移位。通过特殊的指令预设置方法,并通过增加冗余位实现标志位的设置。

32位CPU执行单元总体结构数据流结构简图

  3移位寄存器单元的设计

  3.1矩阵移位器和树状移位器

  在CPU中移位寄存器单元的设计一般采用的是矩阵结构和树状结构的移位器。

  3.1.1矩阵结构(MatrixStyle)移位器

  它的结构为一传输门组成的阵列。行数等于操作数据宽度,列数等于最多能移位数如图2所示(以4位举例)。

矩阵结构移位器

  其中A3~A0是4位数据输入线,sh3~sh0是4根控制信号线。每次进行N位移位操作,对应的shN为高,其它控制信号为低。

  这种结构的优点是:(1)数据传输的速度快,每个信号到达输出端只经过了一级传输,不受移位器位数限制;(2)版图很规整。缺点是:(1)每根控制信号的负载太大,如32位移位器,每根信号线(sh0,sh1,……sh31)都要驱动32个开关管;(2)所需晶体管数目太多,如n位移位器所需晶体管数为2×n×n=2n2(传输门部分采用CMOS实现),所带来的功耗和芯片面积也会增加;(3)每一移位操作只需一根控制线为1,所以需辅以额外的译码单元。

  3.1.2树状结构(TreeStyle)移位器

  这种结构M位移位器所需的级数是log2M每一级都由两根信号线(shn和shn#)控制数据的传输,数据在第i级要么移动2i位或者不移动。树状移位器如图3所示。

树状移位器

  这种结构的优点是:(1)晶体管数目少,n位移器所需晶体管数目为2×n×logn(传输门部分采用CMOS实现),版图面积小于矩阵移位器;(2)控制信号shN~sh0本身就是二进制表示,不需要额外的译码单元。缺点是:数据通路所需经过的开关管数目太多,M位移位器所需的级数是log2M,因此导致延时太大。

  3.2矩阵-树状结构移位器

  由上面的分析我们可以看出,如果所设计的处理器为16位以下CPU,那其移位器不管采用上述哪种方案都能达到要求,但当数据宽度到32位以上,从功耗,速度及版图面积考虑以上方案的固有缺点就会显得非常突出。在本设计中,移位寄存器的实际输入为64位,为结合矩阵结构的优点(速度快、版图规整)和树状结构的优点(晶体管数目少、译码简单),我们在设计中采用矩阵-树状结构整个移位寄存器的是由双总线输入,即输入64位,表1中列举了不同级别比例的矩阵-树状结构所需晶体管数目(n1为tree的级数,n2为matrix的控制线,n3为matrix中用的晶体管数目)。经过综合考虑,我们采用第2行的矩阵-树状级别比例,即矩阵部分最大能实现8位移位,树状部分最大能实现4位移位。

不同级别比例的矩阵-树状结构所需晶体管数目

  

[1] [2]

关键字:移位寄存器  Verilog

编辑:北极风 引用地址:http://www.eeworld.com.cn/FPGA/2011/0708/article_2313.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
移位寄存器
Verilog

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 

夏宇闻老师专栏

你问我答FPGA设计

北京航空航天大学教授,国内最早从事复杂数字逻辑和嵌入式系统设计的专家。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved